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1 Introduction

During this period we began the devolopment of simulators for the various

HDTV systems proposed to the FCC. This simulators will be tested using

test sequences from the MPEG committee. The results will be extrapolated

to HDTV video sequences.

Currently we have completed the simulator for the compression aspects of the

Advanced Digital Televsion (ADTV) proposed by David Sarnoff Laboratories,

NBC, North American Phillips, and Thomson Consumer Electronics. This

proposal has also been supported by Texas Instruments. We are at various

stages of development in terms of the other HDTV proposals.

In the following section we give a brief overview of the ADTV system. In

section 3, we look at some coding results obtained using the simulator. We

compare these results to those obtained using the CCITT H.261 standard.

In section 4, we evaluate these results in the context of the CCSDS speci-

fications and make some suggestions as to how the ADTV system could be

implemented in the NASA network.

Some caveats are in order here. The sequences we used for testing the simula-

tor and generating the results are those used for testing the MPEG algorithm.

The sequences are of much lower resolution than the HDTV sequences would

be, and therefore the extrapolations are not totally accurate. We would ex-

pect to get significantly higher comperession in terms of bits per pixel with

sequences that are of higher resolution. However, the simulator itself is a

valid one, and should HDTV sequences become available, they could be used

directly with the simulator.

In addition to the work described in this report the following papers appeared

or were submitted during the past six months, describing other work under

this grant and its predecessor. The papers are included in the appendix.

• Y,C. Chen, K. Sayood, _ind D.J. Nelson_e_ Robust Coding Scheme

for Packet Video" ,IEEE Traasactions on Communications, vot. 40, pp.

1491-1501, September 1992, _:

• K. Sayood' "Data Compression in,Remote Sensing Applications," IEEE

Geoscience and Remote Sensz'ng'Society Newsletter, no. 84, pp. 7-15,

September 1992.



u O A.C. Hadenfeldt and K. Sayood,"Compression of Color-Mapped Im-

ages," submitted to IEEE Tran"sactions on Geoscience and Remote

Sensing ....

\

• K. Sayood and S. N_, :"Recursively Indexed Differential Pulse Code

Modulation, _ .proceedings IEEEfDIMA CS Workshop on Quantization

and Coding, Pisi:ntaway N J, November 1992.

• K. Sayood, F. Liu, and J.D. Gibson;-_'A Joint Source Channel Coder

Design," accepted for 1993 International Conference on Communica-

tion, Geneva, Switzerland, May 1993.

• A,C. Hadenfetdt and K. Sayood, "Compresion of Color-Mapped Im-

ages," accepted for I99S International Conference on Communication,

Geneva, Switzerland, May 1993.

• B. Gorjala, K. Sayood, and G. Meempat, "An Image Compression

Scheme for use in Token Ring Networks", submitted to 199S Interna-

tional Conference on Communication, Geneva, Switzerland, May 1993.

2 Advanced Digital Television

There are three key elements in the ADTV system.

• ADTV uses MPEG++(Moving Pictures Expert Group) draft proposal

as its compression scheme.

ADTV incorporates a Prioritized Data Transport(PDT) which is a cell

relay-based data transport layer to supports the prioritized delivery

of video data. PDT also offers service flexibility and compatibility to

broadband ISDN.

ADTV applies spectral-shaping techniques to Quadrature Amplitude

Modulation(QAM) to minimize interference from and to any co-channel

NTSC signals.

We have simulated all aspects of the compression algorithm of the ADTV

proposal. The compression algorithm as described in the Advanced Digital



Television, SystemDescription submitted to FCC/ACATS and as imple-

mented in the simulator is described below.

2.1 Compression Algorithm

The basic compression approach is the MPEG++ algorithm which upgrades

the standard MPEG approach to HDTV performance level. The key com-

ponents of this algorithm are described below.

2.1.1 Group of Pictures(GOP)

A GOP comprises up to three types of frames, the I, P and B frames. The I

frames are processed using only intra-frame DCT coder with adaptive quan-

tization; the P frames are processed using a hybrid temporal predictive DCT

coder with adaptive quantization and forward motion compensation; the B

frames are processed using a hybrid temporal predictive DCT coder with

adaptive quantization and bidirectional motion compensation. The I and P

frames are referred to as the anchor frames because of their roles in the bidi-

rectional motion compensation of the B frames. The GOP structure offers a

good tradeoff between the high efficiency of temporal predictive coding, good

error-concealment features of periodic intra-only processing, and fast picture

acquisition.

2.1.2 Input Sequencer

The GOP data structure requires some unique sequencing of the input video

frames. Because of the backward motion compensation in B frames process-

ing, the anchor frames must be processed before the B frames associated with

the two anchors. The frames are transmitted in the same order as they are

processed.

2.1.3 Raster Line to Block/Macroblock Converter

The basic DCT transform unit is an 8 x 8 pixel block called a block. The

basic quantization unit is four adjacent blocks of Y, and one U and one
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V blocks. Sucha quantization unit is calleda macroblock. The converter
convertsthe raster line format to the block and the macroblockformat.

2.1.4 I-frame Processing

An I frame is processedby an intra-frame DCT coder without motion com-
pensation. A fixed quantizeris appliedto the DC coefficient. The AC values
are first weightedby a down- loadablequantization matrix before uniform
adaptive quantization. The quantizationstepfor the AC coefficientsis con-
trolled by a Rate Controller. The I frame coding is pretty much the sameas
JPEG scheme.

2.1.5 P-frame Processing

A P frame is first processed by forward motion compensation, motion is

always referenced to the nearest past anchor frame. The search area is pro-

portional to the number of B frames between two consecutive anchor frames.

The prediction residue or original macroblock, depending on the motion com-

pensation result, goes to DCT coder and quantizer. For intra-macroblocks,

the DCT coefficient quantization is identical to that used for the I frames. For

motion-compensated macroblocks, the DC and AC coefficients are quantized

with same uniform quantizer.

2.1.6 B-frame Processing

Unlike the P frames, the B frames are subjected to bidirectional motion

compensation. The motion references are the two anchor frames sandwiching

the B frames. The search regions are proportional to the temporal distance

between the B frame and the two anchor frames. Like P-frame macroblock,

the B-frame macroblocks have a number of modes. In addition to all the

modes for a P-frame macroblock, the B-frame macroblock further includes a

bidirectional interpolative mode, using both forward and backward motion

compensation, and a unidirectional mode. In the interpolative mode, an

average of the forward and the backward motion- compensated macroblocks

is used as the prediction macroblock. The B-frame macroblock is processed

as a P-frame macroblock.
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2.1.7 Differential, Run-Length and Variable-Length Coding(VLC)

The quantized DC coefficients of all the I-frame macrob|ock and P-, B-frame

macroblocks in intra mode are coded with a DPCM coder. The quantized

AC coefficients are coded with VLC after the zigzag scan ordering. Motion

vectors are differentially coded. In addition, VLC is applied to all the coded

information: motion vectors, macroblock addresses, block types, etc.

2.2 Data Prioritization Layer

The Prioritization Layer comprises the Priority Processor and the Rate Con-

troller.

2.2.1 Priority Processor

Based on the information from the Rate Controller, the Priority proces-

sor pre-calculates the rate of HP(High Priority)/LP(Low Priority) for every

frame. HP/LP fractional allocations may vary with the frame type. Every

data element gets a priority assignment from the Priority Processor accord-

ing to its importance. The header is always most important, followed by

the motion vector, DC value, low frequency coefficients and high frequency

coefficients.

2.2.2 Rate Controller

The Rate Controller monitors the status of the rate buffers in the Transport

Encoder. It uses the buffer occupancy information to compute the necessary

compression requirement and feeds the results in the form of appropriate

quantization parameters to the Video Processor in the Compression Encoder.

The Rate Controller also provides input to the Priority Processor regarding

the initial allocation of HP/LP rate for the next Group of Pictures.

The algorithm used in this simulation for rate control is given by

B

Qs = 2[2-0-_p] + 2



whereQS is the quantizer step-size, and B is a measure of buffer fullness.

2.3 Transport Layer

The Transport Layer comprises the Transport Processor and the Rate Buffer.

2.3.1 Transport Processor

Data elements are supplied to the Transport Processor from the Prioritization

Processor. The Transport Processor generates appropriate header fields for

data group. The header fields are used in the construction of a basic transport

unit called cell. A cell has a header and a trailer enclosing a payload area.

Each cell has a fixed size of 256 bytes long. The header contains chaining and

segmentation information which allows data groups to be segmented across

cells. This feature limits the propagation of channel error from one cell to

the next. The trailer field contains 16-bit error-checking CRC code.

2.3.2 Rate Buffer

Since the number of cells generated is not constant and the channel coding

module interfaces with the Transport Processor at a fixed clock rate, we need

a buffer to smooth out any rate variation. The maximum end-to-end delay

is dependent on the size of the buffer.

3 Simulation Results

The ADTV system described above without the priority and transport pro-

cessors was simulated in detail. The simulation programs were written in C

and implemented on a SUN workstation. Along with the ADTV system we

also simulated a video coding scheme based on the CCITT H.261 recommen-

dations. The purpose was to have a benchmark for simulation.

In our ADTV simulator, the frames were arranged in the following sequence

IBBPBBPBBPBBIBBP...
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The sequenceusedfor testing the simulator wasthe Susie sequence. This se-

quence contains both low and moderate motion of the type to be encountered

in most NASA applications. We present the results in the form of graphs

tables and a videotape accompanying this report.

The coding rates and PSNR under different coding conditions are listed in

Table 1. Two parameters are used to control the coding conditions. The

parameter p controls the output rate and length of the rate buffer. The

fullness of the rate buffer determines the quantizer step-size and therefore,

the coding rate and quality. Thus the parameter p has an important impact

on both coding rate and quality. The parameter t is used to decide whether

the macroblock after motion compensation needs coding. Smaller values of t

will lead to higher rates, while smaller values of t will result in lower quality.

The first three sequences were coded using the ADTV algorithm. In Sequence

1, with p=3, the average rate is is 0.22 bits/pixel. This rate is not sufficient

to effectively code the I frames. As the B and P frames depend heavily on the

I frames, this has a cascade effect on the entire sequence. As the quantizer

stepsize depends on how full the buffer is, this low rate leads to the buffer

getting filled up as the lower portions of the I frame are being coded. This

means that when coding the lower regions of the I frames, the quantizer

is coarse. This results in blocking artifacts which are very noticeable in the

lower portions of the sequence. This effect can be seen in the first sequence on

the videotape. When the coder has finished with the I frame, and the B and

P frames are being coded, as the coding rate is lower for the B and P frames,

the buffer situation gets partly remedied. However, this is not sufficient to

get the quantizer step-size small enough to remove the blocking effect. When

the buffer size is increased (p=5) the number of artifacts is reduced as seen

in the second sequence on the video tape. An interesting effect can be seen in

the third sequence. Here the buffer size was kept the same as in the second

sequence, however, the motion compensation threshold t was kept high. This

means that blocks that would have been coded in sequence 2 are left uncoded

in sequence 3. This in turn emphasizes the blocking effects. One would think

that given the fact that we are accepting more distortion, the rate would go

down. However as we can see from Figure 1, the rates for sequence 2 and

sequence 3 are almost identical. This could be attributable to the fact that

the poor reconstruction of the P frames lead to poor prediction and hence

an increase in bit rate which takes away any savings from the higher motion



compensationthreshold. Thus the parameter t while it effects the quality

has little effect on the rate.

From Figure 1 we can see that the ADTV algorithm generates a very bursty

traffic. This is in sharp contrast to the CCITT H.261 algorithm which pro-

duces relatively smooth output. We can see this from the results for sequences

4-7 which were coded using the CCITT H.261 algorithm using the same pa-

rameters p and t as the first three sequences. The rate and PSNR results

for these sequences are given in Table 1 and Figures 3 and 4. Recall that

the only significant difference between the CCITT H.261 algorithm and the

ADTV algorithm are the sequencing and motion compensation. The use of

the intra-frame coding every 13 th frame in the ADTV algorithm increases

the bit rate. This is compensated for by using the different motion compen-

sation approach giving the bursty traffic. In the CCITT H.261 algorithm,

intra-frame coding is recommended once in every 134 frames, thus there is

no significant variation in the rate from frame to frame. The disadvantage

of the CCITT H.261 algorithm when compared to the ADTV algorithm is

the decrease in the ability to randomly access any particular frame, and the

decrease in the ability to react fast to sudden scene changes. Furhtermore

it should be noted that the ADTV algorithm was proposed for HDTV se-

quences, while the sequences we are using have significantly less resolution.

Due to the importance of I frame, which serves as the anchor frame for both

P and B frame, we decide to put more coding efforts in such frame to try to

eliminate the blocking effect. In Sequence 7-9, the ADTV algorithm has been

modified to keep the quantization stepsize QS constant while coding the I

frame. One effect is that the buffer becomes really full during coding the I

frame, and the subsequent frame gets very little of the coding resources. This

results in an increase in burstiness as can be seen from Figures 5 and 6. How-

ever, this approach does result in the reduction/elimination of the blocking

effect. That such a simple strategy can result in such dramatic improvement

shows that should blocking effects appear in the HDTV sequences, attention

should be paid to the encding of the I frames.

Figures 7-14 show various comparison results between the ADTV, The mod-

ified ADTV and the CCITT H.261 algorithms. While these comparisons

show an advantage for the CCITT H.261 algorithm, subjective comparisons

tend to show the reverse. We invite the reader to examine the videotape and



draw their own conclusions.

4 HDTV and CCSDS

To speculate how the HDTV service would be accomodated by the NASA

network, we briefly review some of the relevant features of the CCSDS rec-

ommendations.

4.1 CCSDS Principal Network

A "CCSDS Principal Network" (CPN) serves as the project data handling

network which provides end-to-end data flow in support of the Experimental,

Observational and interactive users of Advanced Orbiting Systems. A CPN

consists of an "Onboard Network" in an orbiting segment connected through

a CCSDS "Space Link Subnetwork" (SLS) either to a "Ground Network"

or to another Onboard Network in another orbiting segment. The SLS is

the central component of a CPN; it is unique to the space mission environ-

ment and provides customized services and data communications protocols.

Within the SLS, CCSDS defines a full protocol to achieve "cross support"

between agencies. Cross support is defined as the capability for one space

agency to bidirectionally transfer another agency's data between ground and

space systems using its own transmission resources. A key feature of this pro-

tocol is the concept of a "Virtual Channel" which allows one physical space

channel to be shared among several data streams, each of them may have

different service requirements. A single Physical space channel may there-

fore be divided into several logical data channels, each known as a Virtual
Channel.

Eight separate services are provided within a CPN. Two of these services

("Path" and "Internet") operate end-to-end across the entire CPN. They are

complementary services, which satisfy different user data communications

requirements: some users will interface with only one of them, but many will

operate with both. The remaining six services ("Encapsulation", "Multi-

plexing", "Bitstream", "Insert", "Virtual Channel Data Unit" and "Physical

Channel") are provided only within the Space Link Subnetwork for special



applicationssuchasaudio, video,high rate payloads,tape playback,and the
intermediate transfer of Path and Internet data. Our interest is with the
servicesprovidedby the SpaceLink Subnetwork.

4.2 Space Link Subnet Services

The Space Link Subnet supports the bidirectional transmission of data through

the space/ground and space/space channels which interconnect the distributed

elements of the CCSDS Advanced Orbiting Systems. It also provides "direct

connect" transmission services for certain types of data which requires timely

or high-rate access to the space channel. During SLS transfer, different flows

of data are separated into different Virtual Channels, based on data handling

requirements at the destination. These Virtual Channels are interleaved onto

the physical channel as a serial symbol stream. A particular Virtual Channel

may contain either packetized or bitstream data, or a combination of both.

The Space link Subnetwork consists of two layers; the Space Link layer and

the Space Channel layer which correspond to ISO-equivalent Data Link layer

and Physical layer respectively. Efficient use of the physical space channel

was a primary driver in the development of these protocols. The Space Link

layer is composed of the Virtual Channel Link Control sublayer(VCLC) and

the Virtual Channel Access sublayer(VCA).

The main function of VCLC sublayer is to convert incoming data into a

protocol data unit which is suitable for transmission over the physical space

channel. Four type of protocol data units may be generated by the VCLC

sublayer: fixed length blocks of CCSDS Packets, called "Multiplexing Pro-

tocol Data Units" (M-PDUs); fixed length blocks of Bitstream data, called

"Bitstream Protocol Data Units" (B-PDUs); fixed length blocks of mixed

packetized and isochronous data, called "Insert Protocol Data Units" (IN-

PDUs); and fixed length blocks of data for use by retransmission control pro-

cedures, called "Space Link ARQ Procedure Protocol Data Units" (SLAP-

PDUs).

There are several procedures in VCLC sublayer to perform the function.

The Encapsulation procedure provides the flexibility to handle virtually any

packet structure. It puts a primary header to delimited data units (including

Internet packet) and make it to be a CCSDS Packet. Multiplexing procedure
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multiplexes those CCSDS Packets on the same virtual channel together. The

length of multiplexing protocol data unit is fixed since it is required to fit

exactly in the fixed length data space o[ VCDU/CVCDU. There maybe some

packets which overlap two or more M-PDU and "first packet pointer" points

out where the first packet starts. Some user data, such as audio, video,

playback and encrypted information, will simply be presented to the SLS as

a stream of bits or octets. The Bitstream procedure simply blocks these data

into individual Virtual Channels and transmits it. When the transmission

rate is high, Bitstream data may be transmitted over a dedicated Virtual

Channel. Alternatively, if the transmission rate is low, it can be inserted

at the front of other packetized or bitstream data. This is called the Insert

procedure. Through this procedure, bandwidth can be used more efficiently.

The last procedure of VCLC is Space Link ARQ Procedure (SLAP) which is

used to provide guaranteed Grade-1 delivery of data links that interconnect

the space and ground elements of a CPN. The SLAP-PDU carries "Link

ARQ Control Words" (LACWs) which report progress on receipt of data

flowing in the opposite direction. Upon arrival at the receiving end, the

LACW is extracted from the PDU, and the sequence number is checked to

assure that no data has been lost or duplicated. In the event of a sequence

error, the LACW carried by PDUs traveling in the opposite direction is used

to signal that a retransmission is required. This retransmission begins with

the first PDU that was not received in sequence, and all subsequent PDUs

are retransmitted in the order in which they were originally provided to the

LSAP from the layer above.

The VCA sublayer creates the protocol data units used for space link data

transfer: these are either "Virtual Channel Data Units" (VCDUs) or "Coded

Virtual Channel Data Units" (CVCDUs), and are formed by appending fixed

length Header, Trailer and (for CVCDUs) error correction fields to the fixed

length data units generated by the VCLC sublayer. The VCA sublayer

is composed of Virtual Channel Access(VCA) and Physical Channel Ac-

cess(PCA) procedures. VCA procedure generates VCDU for protocol data

units which come from VCLC sublayer or accepts independently generated

VCDU from reliable users. A VCDU with a powerful outer code of error-

correcting Reed-Solomon check symbols appended to it is called a CVCDU.

Relative to a VCDU, a CVCDU contains more error-control information and,

hence, less user data. "Virtual Channel ID" which is field of VCDU/CVCDU
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Header can enable up to 64 VC to be run concurrently for each assigned
Spacecraft ID on a particular physical spacechannel. Since spacedata is
transmitted through weaksignal, noisy channelas serial symbol stream, a
robust framesynchronizationprocessat the receivingend is required. There-
fore, fixed length VCDU/CVCDU is usedand PCA procedureprefixesa 32
bits SynchronizationMarker in front of VCDU/CVCDU to form a "Channel
AccessData Unit" (CADU). A contiguousand continuous stream of fixed
length CADUs, known asa "Physical ChannelAccessProtocol Data Unit"
(PCA-PDU) is transmitted asindividual channelsymbolsthrough the ISO-
equivalent PhysicalLayer of the SpaceLink Subnet,which is known as the
"SpaceChannelLayer".

4.3 Space Link "Grades of Service"

Three different "grades of services" are provided by the Space Link Subnet,

using a combination of error detection, error correction and retransmission

control techniques. We have to note that each virtual channel can only

support a single grade of service.

4.3.1 Grade-3 Service

This service provides the lowest quality of service. Data transmitted using

Grade-3 service may be incomplete and there is a moderate probability that

errors induced by the Space Link Subnet are present and that the sequence

of data units is not preserved. A VCUD is discarded if an uncorrectable
error is detected at the destination. Grade-3 service should not be used

for transmission of asynchronous packetized data, because it provides insuffi-

cient protection for the extensive control information contained in the packet
headers.

4.3.2 Grade-2 Service

CVCDU is the unit of transmission that support Grade-2 service. The Reed-

Solomon encoding provides extremely powerful error correction capabilities.

Data transmitted using Grade-2 service may be incomplete, but data se-
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quencing is preserved and there is a very high probability that no data errors

have been induced by the Space Link Subnet.

4.3.3 Grade-1 Service

Data transmitted using Grade-1 service are delivered through the Space Link

Subnet complete, in sequence, without duplication and with a very high

probability of containing no errors. It is provided by using two paired Reed-

Solomon encoded Virtual Channels, in opposite directions, so that an Auto-

matic Repeat Queueing (ARQ) retransmission scheme may be implemented.

5 HDTV Transmission on the CCSDS Net-

work

As described in the previous section, some user data, such as audio, video,

playback and encrypted information, can simply be presented to the Space

Link Subnet (SLS) as a stream of bits or octets. The SLS merely blocks these

data into individual Virtual Channels and transmits them using Bitstream

Service. Some bitstream data, such as digitized video and audio, will have

stringent delivery timing requirement and are known as "isochronous" data.

For the transmission of ADTV coded information, the channel transmission

rate is high enough to dedicate a specific Virtual Channel. Although the

coding output rate is quite bursty, there are two mitigating circumstances

1. the pattern of burstiness is relativey "uniform". That is, the data rate

peaks every 13 th frame.

2. the variations occur very fast, that is high traffic persists for only a

single frame followed by low traffic.

Because of (2) the traffic can be smoothed out using a moderate sized buffer,

and (1) implies that the size of the buffer can be ascertained with some
confidence.

The delay constraints on the transmission preclude the use of the Space Link

ARQ procedure, while the delay constraint coupled with the high rate argue
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against the useof the Insert and Multiplexing procedures.This leavesthe
Bitstream procedureas the only viable candidatefor HDTV transmission.
This conclusioncoincides with that of the CCSDS Red Book Audio, Video,

and Still-Image Communication Services

The Bitstream service fills the data field of the B-PDU (Bitstream- Protocol

Data Unit) with the Bitstream data supplied at user's request. Each B-PDU

contains data for only one VC, identified by the VCDU-ID parameter. Each

bit is placed sequentially, and unchanged, into the B-PDU data field. When

the Bitstream data have filled one particular B- PDU, the continuation of

the Bitstream data is placed in the next B-PDU on the same VC. Due to the

delay constraints of the PDU release algorithm, if a B-PDU is not completely

filled by Bitstream data at release time, some fill pattern has to be filled into

the remainder of the B-PDU.

As far as the grade of service is concerned, one could use the error protection

service provided by the ADTV algorithm with grade 3 service, or discard any

error protection from the ADTV signal and use grade-2 service. Given the

sketchy amount of information available abouthforward error correction in

the ADTV algorithm we would suggest the use of the Grade-2 service in the

CCSDS recommendations. Some kind of forward error correction is impera-

tive because of the need for data sequencing along with the general need for

video integrity. Therefore, Grade-2 service which adopts Reed-Soloman en-

coding is a logical choice. According to the minimum predicted performance

of Grade-2 service, the probability that a Coded Virtual Channel Data Unit

(CVCDU) will be missing is 10-L If we assume a CVCDU contains 8800

bits of data, from our simulation, about 95 macroblocks of video data (for

ADTV format, a frame is formed by 90Hx60V macroblocks) will get lost in

a duration slightly over one and half hour. This shouldn't hurt the quality

too much in motion compensation scheme. The probability that a CVCDU

contains an undetected bit error is 10 -12 , only one bit error will occur in

a transmission period over 11 hours. If this error bit occurs in video data,

it won't be easy to notice the degradation. But if the error bit occurs in

control data, some degree of damage is inevitable. It may therefore be de-

sirable to provide some more protection to the control data before it enters

the network. We are still looking at this particular issue.
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Table 1.Performanceof codingrateandPSNRusingADTV andH.261technique
(SusieSequence150frames)

Sequence1

Sequence2

Sequence3

Sequence4

Sequence5

CodingRate
(Mbits/s)

STDR*
(Mbits/s)

9.39

PAR** Average
PSNR

0.61

STDP*

9.27 2.12 1.68 35.14 4.24

15.34 2.26 1.33 37.64 4.52

15.33 2.31 1.33 37.67 4.52

0.811.65

1.310.48

36.83

39.0515.54 0.79

Sequence6 15.54 0.49 1.31 38.42 0.49

Sequence7 31.23 8.17 1.86 41.31 1.43

Sequence8 17.27 10.72 3.37 38.77 1.68

Sequence9 17.24 10.86 3.37 38.85 1.61

* STDR : Standarddeviationof codingrate

STDP: Standarddeviationof PSNR

** PAR : Peakto averageratio

frames/second: 29.97

Act. videopixels : (Luma) 1440Hx960V,(Chroma)720Hx480V

Sequence1 : ADTV p=3, t=l

Sequence

Sequence

Sequence

Sequence

Sequence

Sequence

Sequence

Sequence

2 : ADTV

3 : ADTV

4 : H.261

5 : H.261

6 : H.261

p=5, t=l

p=5, t=3

p=3, t--1

p=5, t=l

p=5, t--3

7 : ADTV, p=10, t=l, q--4for intra-modeframe

8 : ADTV, p=5, t=l, q--4for intra-modeframe

9 : ADTV, p=5, t=3, q=4 for intra-modeframe



Fig. 1 Coding Rate using ADTV Technique
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Fig. 7 Comparison of Coding Rate (p=5 t=l)
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Fig. 9 Comparison of Coding Rate (p=5 t=3)
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1 Introduction

With the current and future availability of an increasing

number of remote sensing instruments, the problem of

storage and transmission of large volumes of data has be-

come a significant and pressing concern. For example, the

High-Resolution hnaging Spectrometer will acquire data at

30 meter resolution in 192 spectral bands. This translates to a

data rate of 280 Mbps! The Spaceborne Imagilag Radar - C

(SIR-C) will generate data at the rate of 45Mbps per channel

with four high data rate channels [1]. To accomodate this ex-

plosion of data there is a critical need tot" data compression.

One can view the utility of data compression in two different

ways. If the rate at which data is being generated exceeds the

transmission resources, one can use data compression to

reduce the amount of data to fit available capacity. Or given

some fixed capacity, data compression permits the gathering
of more information than could otherwise be accomodated.

In this paper;_e provide a survey of current data com-
pression techniques which are being used to reduce the

amount of data in remote sensing applications. The survey

aspect of this paper is far from complete, reflecting the sub-

stantial activity in this area. The purpose of the survey is

more to exemplify the different approaches being taken

rather than to provide an exhaustive list of the various

proposed approaches.For more information on compression

techniques the reader is referred to [2, 3, 4].

Compression techniques in remote sensing applications

can be broadly classified into three (non distinct) categories.
These are

!. Classification/Clustering

2. Lossless Compression

3. Lossy Compression

The rationale behind the classification approaches is that

in a given dataset, the end user is generally interested in par-
ticular features in the data. The 'dimensionality' of these fea-

tures is generally substantially less than the dimensionality

of the data itself, Thus, rather than transmitting the data in its

entirety, if the features are extracted on-board and trans-

mitted this can result in a significant amount of compression.

Lossless compression techniques provide compression

without any loss of information. That is, the raw data can be

Supported by the NASA Lewis Research Center under grant NAG 3-
806 and The Goddard Space Flight Center under grant NAG 5-1612.

exactly reconstructed from the compressed data. This is used
when the data, or some subset of the data, is needed in exact

form. In many cases, the data such as remotely sensed im-

ages, will be viewed by a human (as opposed to a machine).

In these cases, distortions which are not perceptually sig-
nificant can be tolerated, and lossy compression, which en-

tails the discarding of some of the information, can be used.

The utility of this approach is closely related to the amount

of distortion incurred and the importance of fidelity in the

particular application. The classification approaches can be

viewed as a form of lossy compression. The three ap-

proaches are not mutually exclusive. For example, one may

use classification as the first step with the feature vectors

being Losslessly encoded.

2 Classification

If we assume an image to be composed of a small number

of objects, then the most efficient form of data compression

is to assign each pixel in the image to one of the objects, arid

then simply transmit the object labels to the ground. This

idea is behind several high compression schemes which at-

tempt to classify the pixels based on different features, and

then transmit the classification map.

A technique called BLOB was introduced by Kauth et. al.

[5] which uses proximity information along with spectral in-

formation for unsupervised clustering. The use of proximity

information allows for greater ease in the classification of

boundary pixel values, which otherwise could be classified

to a set different from the adjacent regions. BLOB would be

most useful in situations where objects have relatively well
defined boundaries.

Another object oriented unsupervised classification

scheme is described in [6]. They use what they call the path

h3pothesis for object classification. The path hypothesis as-

sumes spatial contiguity, and spectral nearness for different

pixels belonging to the same object. The spectral features of

the different objects are then extracted and used to classify

the object. They report an increase in classification accuracy

along with a decrease in the amount of data required.

Hilbert [7] proposed a more general clustering algorithm.

He proposed dividing the data into blocks, and then cluster-

ing them using an unsupervised procedure. The cluster

centroids were then transmitted, along with a feature map

describing the cluster to which each block belonged. This ap-

proach does not depend on the existence of well defined

boundaries. Hilberts technique is a precursor to current day

Vector Quantization algorithms which are discussed later.

A common precursor to classification is the transforma-

tion of the data using the Karhunen-Loeve Transform. The

Karhunen-Loeve transform is used to linearly transform data
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into uncorrelated coordinates. This then makes the classifica-

tion task easier, as the coordinates can be clustered in a

multi-dimensional space, and then classified based on their

location in this space. The rows of the KL transform matrix

are the eigenvectors of the correlation matrix of the data.

These vectors will often be related to physical parameters.

For example in [8] the first and second eigenvectors cor-

respond to the response of the dominant surface covers.

Chen and Landgrebe [8] also show that it is sufficient to

send only clipped (hard limited to + - 1) eigen functions

along with only a fraction of the coefficients to obtain sig-

nificant classification accuracy. They therefore propose the
use of this scheme aboard the HIRIS instrument.

3 Lossless Compression

Lossless compression, as the name implies, consists of

reduction in the amount of data without sacrificing the

fidelity of the data. The earliest known lossless compression

technique of the technological age is probably the Morse
code. [n the Morse code, letters that occur often such as E

are coded using short symbols, while letters that occur rela-

tively infrequently such as Z, are represented by long sym-

bols ( a single dot for E and dash dash dot dot for Z). This

idea (albeit in more sophisticated form) is at the heart of

most lossless compression schemes. In 1948 Claude Shan-
non defined the amount of information contained in the

event X as log, _ [91, where P(J0 is the probability of

the event X and a is the base of the logarithm. If a = 2 the

unit of information is bits. If we define X" to be the sequence

of observations (X0, Xl ..... X,,.0, then the entropy of the

source generating the sequence is defined as

H(S) = lim G,,

where

_,, = _f(:C)tog2 1
P(Z')

Shannon [9] showed that the minimum average rate at

which the output of the source S can be encoded is H(S)

bits/symbol. If the source outputs {Xi} are independent then

the expression for entropy reduces to

1
H(S) = Ol = '_, P(Xi) log 2

P(Xi)

Given a sequence of independent observations, Huffman

[10] developed an algorithm which provides a variable

length code which gives an average coding rate R, where
H(S) < R < H(S) + I. The algorithm assigns shorter

codewords to more probable symbols and longer codewords

to tess probable symbols a la Morse. Another technique

which operates on sequences rather than individual letters is

Arithmetic Coding. The Arithmetic coding algorithm guaran-
2

tees an average coding rate R where H(S) < R _<H(S) + -, n
n

being the length of the sequence. If the statistics of the se-

quence change with time, these techniques will suffer some

degradation. To combat this several adaptive coding teclmi-

ques have been proposed including dynamic Huffman

coding [11], adaptive arid_metic coding [12] and the Rice al-

gorithm [13]. The Rice algorithm has been shown to be op-

timal under some widely available conditions [14], and has

been implemented in a VLSI chip which can process 20 M-

Bytes per second [15].

If the observations are not independent then the code

designed using the first order probabilities P(Xi) is only

guaranteed to be within one bit of GI which may be substan-

tially greater than H(S). Because of this fact lossless com-

pression consists of two steps; decorrelation, and coding.

The first step can be seen as an 'entropy reduction' step in
which the redundancy or correlation of the data is removed

(reduced). This results in another sequence which has a first

order entropy Gt which can be significantly lower than the

first order entropy of the original sequence. Now if a vari-

able length code is designed using the first order prob-

abilities of the decon-elated data, this will result in a lower

rate/higher compression. Consider for example the following

sequence

12345432123212345432345

estimating the first order probabilitiesfromthe sequence we
obtain

P[I] = P[51 = ; P[21 = P[31 = ; P[4I- 23

which gives a value for Gt of 2.25 bits/sample. It is obvious

from looking at the data that it possesses some definite struc-

ture. Some of this structure can be removed by storing con-

secutive differences. The original data can be reconstructed

(without loss) by simple addition. The difference data is

11111- 1- I-I- 111-1- 11111-1-1-1111

The difference can be represented using a binary al-

phabet, so the coding rate can immediately be lowered to

one bit/sample. To see what the value of Gt is we first com-
14 9

pure the first order probabilities as P[1] = "_, P[-1] = _,

which gives an entropy of .96 bits/sample. In this particular

case the gain of 0.134 bits per sample may not be worth the

additional complexity required for a variable length code.

Notice that in this case the compression was obtained mainly
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due to the decorrelation step+ Because of this, research in

lossless compression is focusing more and more on the

development of better decorrelation algorithms. An idea of

how much decorrelation gain is available can be obtained by

looking at the conditional entropy.

In the example given above, the data was one dinaen-

sional so the prediction used to generate the difference or
resi&_al data was also one dimensional. In the case of

remotely sensed images, the data is generally three dimen-

sional: two spatial dimensions and a spectral dimension. In

these cases, it would seem reasonable to use prediction based

on all three dinaensions. Chen et. al. [16] compute the

theoretical advantages to be gained from using prediction

based on all three dimensions. They show that while there is

some advantage to be gained from using more than one

dimensional prediction, the increase in compression is small.

However. if the increase in complexity of going from one to

two or three dimensions is acceptable (and it can be argued

that the increase in complexity is ndnilnal), it would seem

reasonable to use multi-dimensional prediction to decorrelate
the data.

A somewhat different approach is adopted by Memon et.

al. [17. I8]. They reason that in an image the correlations

may be maximum in the vertical, horizontal, or diagonal

direction depending on the object being imaged. Therelbre,

one should use whichever pixel gives the most decorrelation

for prediction. They therefore develop the concept of predic-

tion (or scanning) trees for performing the decorrelation. The

drawback with this approach when coding single images is

that the cost of encoding the prediction tree may eat up any

savings due to better decorrelation. In the case of multi-

spectral images, because the same prediction tree can be

used to code a large number of bands, the relative cost of en-

coding the prediction tree is small enough not to overwhelm

the savings obtained via this approach [19].
In all that we have discussed above, we have taken a

rather general view of the losslt.ss compression problem.

When faced with a specific problem, one can often come up

with a simpler more efficient solution. Consider the problem

of encoding the output of a spectrometer. A general algorithm

such as the Rice algorithm will do a nice job of encoding the

output of the spectrometer. However, given the very special

structure of the data (the data looks like a noisy decaying ex-

ponential) one can come up with simpler techniques as in

[20] which are simpler and give better performance. Similar-
ly Steams et. al. [2 l ] develop a lossless compression scheme

tuned to the peculiarities of seismic data. When using ap-

plication specific algorithms, the user should be aware of the

fact that if the data sequence deviates from the assumed

structure, this may result in performance loss.

Finally, lossless coding can be used in conjunction with
other techniques. Several schemes in the literature use loss-

less compression as the second stage, where the first stage is

feature extraction or lossy compression [23, 23, 24].

4 Lossy Compression

In many applications, loss of information which is not per-

ceptually significant can be easily tolerated. In fact in certain

cases, such as processing of SAR data [25], the 'information'

lost may actually be the noise. In these cases, it makes sense

to use lossy compression techniques which provide much

higher compression than the lossless techniques. However,

before we extoll the virtues of various lossy compression

techniques, one should keep in mind the importance of care-

fully picking the distortion measure. Most of the compres-

sion schemes described here use the mean squared error (or

some variant) as the distortion measure. The mean squared
error is defined as

N
1 ^

M S e = (x,-.,-,)-
i=1

where .ri is the original data value and xi )s the reconstructed

(compressed and then decompressed) value. Note that this is

an average measure therefore it will spread out the error ef-

fects at any one location. Under this measure, a large error in

one sample value with no or little error in the other N-I

sample values may be equivalent to small errors in all N

sample values. If the application requires that each sample

value be represented within some tolerance, then the MSE is

probably not the distortion measure that should be used.

4.1 Quantization

The heart (and sometimes the totality) of most lossy com-

pression schemes is the quantization process. Quantization is

a many to one mapping from a possibly infinite set to a finite

set. The input to the quantizer can be a scalar, in which case

the quantizer is called a scalar quantizer, or a vector in which

case the quantizer is called a vector quantizer (VQ). The

scalar quantizer is simply a concatenation of an A/D and a

DIA. A simple MD is shown in Figure 1. Assuming A = 1, in

this A/D if the input falls in the range (0,11, the output is the

codeword 10, if the input falls in the range (.--_,-11 the out-

put is the codeword 00, and so on. The D/A takes the

codeword produced by the A/D and generates a real value

corresponding to the interval represented by the eodeword.

In our simple example if the codeword 00 is received the

D/A will put out a value of -1.5. The input/output map for

this quantizer (A/D-D/A combination) is shown in Figure 2.

Figures l and 2 describe a two bit uniform quantizer. If the

stepsize A is not constant for the different intervals, the quan-

tizer is called a non-uniform quantizer. Given information

about the statistics of the input signal, Max [26] and Lloyd

[27] have developed algorithms for the design of optimum

uniform and non-uniform quantizers for memoryless sour-

ces. Kwok and Johnson [281 use a two bit quantizer designed

for Gaussian data to code SAR data from the Magellan mis-

sion. The SAR data is originally at 8-bit resolution, so the
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compression ratio is 4:1. To accomodate the rather large

dynamic range of the SAR data, the quantizer is adapted on

a block by block basis, using the average signal magnitude.

The signal magnitudes in a block are used to compute a

threshold value which is used in place of A in Figure 1. The

output of the D/A are the optimum values for a Gaussian

input with variance of one multiplied by the computed
threshold.

The SIR-C [ 1] uses 8 bit uniform quantization followed

by a feature which allows it to reduce the number of bits per

sample to facilitate the acquisition of more samples. Data

compression thus allows the acquisition of more data at the
cost of reduced resolution.

In some cases it might be more efficient to quantize some
function of the data rather than the data itself. Dubois et. al.

[29] compress the output of an imaging radar polarimeter by '

first obtaining the Stokes matrix from the scattering

matrices. Four Stokes matrices from contiguous pixels are
added to form one four-look Stokes matrix. The elements of

the four-look Stokes matrix are then quantized. The ad-

vantage to this approach is that the elements of the Stokes

matrix have certain well defined properties which can be

used in the quantization process of the Stokes matrix.

4.2 DPCM

The relationship between the variance of the input to the

quantizer and the MSE can be given by the following

relationship,
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Figure 4. DPCM coding of a one dimensional edge

MSE=e,z- _._

where e 2depends on the input probability density function,

and R is the number of bits/sample. As can be seen from this

expression, the MSE is proportional to the input signal

variance. Therefore, if we could reduce the input signal

variance this would lead to a reduction in the MSE. (It

should be noted that the operations to remove the redundan-

cy could also change the input pdf which may diminish the

benefits of a reduced variance.) This is the motivation for a

class of lossy compression schemes known as Differential

Pulse Code Modulation (DPCM) schemes. DPCM schemes

remove redundancy in the source sequence by using the cor-

relation in the source sequence to predict ahead. The

predicted value is removed from the signal at the transmitter

and reintroduced at the receiver. The prediction error, which

has a smaller variance than the input signal is then quantized

and transmitted to the the receiver. A block diagram of a

DPCM system is shown in Figure 3. This technique is used

in the coding of the SPOT satellite's panchromatic band.

While DPCM coding performs well in quasi-stationary

regions of an image, it does a poor job in edge regions. The

reason for this is that the prediction in DPCM uses the pre-

vious reconstructed pixels. In an edge region, the prediction

error is quite large. Therefore, the input to the quantizer

lands in one of the outer regions ((--o*,-1],[l,**) in our ex-

ample). The quantization error can therefore be quite large.

This is fed back via the prediction process into the coding of

the next pixel, and so on causing a smearing of the edges.

This process is demonstrated on a one-dimensional 'edge' in

Figure 4. This problem can be overcome by using recursive-
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Figure 5. Origimd aeri_d view of Omaha

ly indexed quantizatioi_ [30, 31 ] which avoids the large quan-

tization error problem by operating the quantizer in two dif-

ferent modes. Whosoever the input to the quantizer tails in

the external regions, the qt, antizer switches into a recursive

mode. and the quantization error is requantized until the

error tails within some predetermined tolerance. This ap-
proach not only prexents large quantization errors from

propagating through the coded sequence, it also guarantees

that the error per pi.w! will be less than a pre-determined
value. To show how well this scheme works, we code the

aerial view of Omah_ ,hoxvn in Figure 5. The compressed

(and decompressed) image coded using the DPCM scheme

described above at a rate of 1.4 bits per pixel is shown in Fig-
ure 6. Note that while there is an overall increase in

'blurriness" the distortion introduced does not blur the edges.
While the DPCM structure removes substantial amounts

of the redundancy fiom the data stream, it should be remem-

bered that the prediction process in the DPCM structure is
linear, and can therefore remove only those redundancies

which are expressed as linear processes. For example, a slow-

ly varying sequence 1 2 3 4 5 4 3 3 4 5 6 7 7 7 6 has redun-

dancies that can be modeled by a linear process. However,

we can easily come up with sequences that have redundan-

cies that can not be characterized by a linear process such as

4 24 15 19 4 24 15 19 .... This fact has been used by some to

improve the data compression by making use of this redun-

dancy for code selection [32}, and by others for providing

error protection [33 ].

4.3 Vector Quantization

Until now we have been talking about quantization as a

scalar process, however, the basic idea of quantization can

easily be extended to the vector case. Scalar quantization can

be viewed as a partition of the real number line, with the

Figure 6. DPCM coded Omaha image at 1.4 bpl;

A/D doing the partitioning, and the D/A providing a repre-

sentative value tot" each partition. Similarly. vector quantiza-

tion can be see_ as a partitioning of multidimensional space.

While conceptually the problems of scalar and vector quan-

tization approaches are very similar, the practical problem of

designing vector quantizers is significantly more difficult.

Two somewhat different approaches have been taken

towards the design of vector quantizers. The first is a cluster-

ing approach similar to the Hilbert technique [7]. In this ap-

proach [34], a training sequence is used to identify the

regions in multi-dimensional space where the data seems to

cluster. The qt, antizer outputs are the centroids of these

clusters, and the partitions are the nearest neighbor partitions

of these centroids. An example of a two dimensional vector

quantizer is shown in Figure 7. The VQ in Figure 7 contains

4 output levels, or codewords. Thus the size of each

codeword is two bits. But each output level corresponds to

the coding of two input samples, therefore, the number of

bits per sample is one. In general, given the dimension of the

vector d and the number of bits per sample R, the size of the
vector codebook is 28a. Notice. that this means an exponen-

tial increase in the size of the codebook with dimensionality

and rate. For example, given d = 12 and R = 2, the size of the
codebook would be 2 -4 = 16777216! This represents an enor-

mous expense in storage and computing resources. Thus the

rate-dimension product provides a limitation on the clustered

VQ designs. Fortunately, a lot can be done at low rate-dimen-

sion products. For more moderate rate-dimension products a

number of somewhat more structured VQ algorithms have

been developed [351. Chang et. al. [251 report the use of a

tree-structured VQ on Seasat SAR imagery with favorable

results. As the codebook of the VQ is obtained by training, it

is important that the data in the training set be representative
of the data in the test set. If this is not the case, there can be
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significant degradation in the data that is not typical of the

training set [251. The Omaha image of Figure 5 is coded

using a clustered VQ at 0.5 bits per pixel. The result is

shown in Figu,e 8. Tile VQ dimension was 16 (4X4 blocks)

and this is evident fl'om tile coded image in Figure 8. where
there is a noticeable amount of blockiness. The blocks that

lie on the edges of objects ill the image clearly distort tile
edges. The VQ codebook was obtained using another aerial

image. We can imp,ove the performance of this algorithm

by increasing the rate and/o," by generating the codebook

from an image which more closely resembles the image

being coded. Ill Figure 9 we have the Omaha image coded at

I bit per pixel using a codebook generated using the Omaha

image itself. There is substantial improvement ill tile quality,

though there is still some distortion in the lower quarter of

Figure 8. VQ coded Omaha image at 0.5 bpp

the picture. It should be noted that the use of the image to

generate the codebook is generally not realistic.

Vector Quantization is also used by Gupta and Gersho for

the coding of Landsat TM images [36J. They use a vector

DPCNI systern v,,ith vector quantization ill the spatial

domain, and predictive encoding in the spectral domain. A

variation of predictive VQ is also used by Giusto [37] for the

compression of multispectral images.

The rate-dimension product constraint on vector quan-

tizers can be lifted by making the vector quantizer more and

more structured. Of course, as the VQ acquires more and

more structure of its own, it is less and less responsive to

structure in the data. The most structured vector quantizers

are those based on a multi-dimensional lattice [38]. While

these quantizers do all excellent job of quantization, they can-

not at the same time perform the redundancy removal opera-

tion performed by the clustered VQs. They therefore have to

be used in conjunction with other techniques to provide com-

pression [39, 40}.

4.4 Transform Coding

Most of the techniques we have talked about operate in

the data dolrt:.thl, i.e. without any tr:tllsformation. There is a

large class of compression techniques that operate on a trans-

formed version of the data. Tile,,' :ire called transform coding

techniques• The idea behind transform coding is to transform
the data in such a way as to compact most of tile energy (and

information) into a few coefficients. These coefficients can
then be coded. _ hile other coefficients can be discarded

thereby achieving data compression. The most efficient trans-

form from the compaction point of view is the Karhunen-
Loeve [2[ transform. However. the Karhunen-Loeve

transform is data dependent v.hich makes it impractical for

most compression applications. Tile best alternative to the

Figure 9. VQ coded Omaha image at 1.0 bpp
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Karhunen Loeve transform is the Discrete Cosine

Transtbrm (DCT). This is a t'eal, separable, unitary transform

that is the basis for an image compression st:mdard [411.

Because of its popularity in image compression various fast

algorithn'ls have been proposed tbr its implementation [42,

43].

The ESA Huygens Titan Probe to be launched by the Cas-

sini Orbiter will use the DCT for compressing the image data

acquired during its descent thmt, gh Titan's atmosphere. The

images of size 256X256 will be divided into 8X8 blocks.

These blocks will be transformed and the transform coeffi-

cients reordered using the zigzag ordering shown in Figure

10. The ordered coefficients will then be blocked into substr-

ings of four coefficients each. Substrings with all coefficient

values below a specified threshold ',','ill be deleted while the

remainder ,,,,ill be quantized using scalar quantizers. Details

can be found in [44, 45].

Figure I 1. DCT coded Omaha image at 0.5 bpp.

To see the artifitcts introduced by DCT coding ',ve have

coded the Omaha image at 0.5 bits per pixel and 1 bit per

pixel as shown in Figures I 1 and 12. Note the substantial

block artifacts in Figure I l which have been reduced to a

large extent in Figure 12. However even in Figure 12 one

can see significam distortion in edge regions.

An adaptive version of DCT was also considered by

Chang et. al. [251 for the compression of Seasat SAR im-

agery. They compare the DCT techniqt,e with a VQ techni-

que and decide in favor of the VQ technique based on

complexity issues. With the wide acceptance of the DCT as

an image compression standard, the complexity issue may

no longer be rele``'ant, as more and more nmnufacturers are

bringing hardware implementations of the DCT to the

market.

5 Conclusions

As can be seen from this discussion, there is a substantial

amount of on-going activity in the area of data compression

for remote sensing applicatitms. This ``,,'ill onlx increase as

there is more and mo,e need for data compression. However,

ther are several areas of research which have tlot been ad-

dressed in any significant way.

There is a need R_r the development of better distortion

measures which can be then used to develop more sophisti-

cated compressioq algorithms. It is possible that rather than a

single distortion measure, a set of distortion measures will be

needed for different applications. The development of such

measures, and algorithms utilizing these measures, require

close cooperation between data compression specialists and

the scientists and engineers who are the end-users of the data

obtained through remote sensing.

The muhi-dimensional (spatial and spectral} nature of the

data has not really been thoroughly explored (except in the

Figure 12. DCT coded Omaha image at 1.0 bpp.
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classification approaches). With tile development and

deployment of high spectral resolution instruments, this par-

ticular aspect of remotely sensed data will become more im-

portant. Compression schemes which take advantage of this

fact need to be developed. An analogy could be drawn with

the development of compression algorithms for video as op-

posed to still images. However, the algorithms developed for
video cannot be directly applied to high spectral resolution

image data sets, as the differences that occur between frames

of a video sequence are not the same as the differences that

occur between different spectral images. It would seem that

VQ approaches such as [36] would provide possible solu-

tions. The rate-dimension constraints in clustering VQ could

be avoided by the use of Lattice VQ techniques. Another ap-

proach described in [46] is to use a two step strategy, in

which the first step is used to model the data in the spectral
direction. The resulting models are then treated as a vector

image for compression in the spatial directions. Beyond this,

however, there is a need for the development of three dimen-

sional approaches, both to model the data, and develop com-

pression algorithms.
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Abstract

In a standard image coding scenario, pixel-to-pixel correlation nearly always exists in the

data, especially if the image is a natural scene. This correlation is what allows predictive coding

schemes (e.g., DPCM) to perform efficient compression. In a color-mapped image, the values

stored in the pixel array are no longer directly related to the pixel intensity. Two color indices

which are numericaUy adjacent (close) may point to two very different colors. The correlation

still exists, but only via the colormap. This fact cart be exploited by sorting the color map to

reintroduce the structure. In this paper we study the sorting of colormaps and show how the

resulting structure can be used in both lossless and lossy compression of images.

" This work was supported by the NASA Goddard Space Flight Center (NAG 5-1612) and the NASA
Lewis Research Center (NAG 3-806).
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1 Introduction

Many lower-cost image display systems use color-mapped (or pseudo-color) displays. While

there has been considerable attention devoted to the compression of monochrome and full-color

images, the compression of color-mapped images has not received similar attention.

The human eye can distinguish hundreds of thousands of different colors in a color space,

depending on viewing conditions [1]. A full-color (also called true-color) frame buffer provides

a means of displaying this wide range. Such a system is illustrated in Figure 1.
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Figure I FuU-Color Frame Buffer

Many applications of digital images benefit from, or require, color capabilities to be effective.

If a fuU-color display is used, an application may become too costly to implement practically.

Also, the images involved require large amounts of storage space, whether in display memory or

on a mass-storage device. A less expensive solution is needed.

These applications naturally lead to the pseudo-color or color-mapped frame buffer, shown in

Figure 2. This type of display is typical of those found on personal computers and workstations.

A smaUer amount of image memory is required, one-third that of the fuli-color system example.

The values stored in memory are used as indices into a 24-bit table, the colormap.
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I

Each entry in the colormap consists of 8-bit values for the red, green, and blue portions of

the pixel. These three values are then passed through DACs to the red, green, and blue electron

guns of the CRT, as with full-color system• The color-mapped system allows the display of a

small number of colors at a time, 2 s for the system shown in the figure, which can be selected

from a larger set of colors (224 for this example). By careful selection of the colors in the

colormap, a large variety of images can be displayed, often with quality approaching that of a

ful/-color display system.
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Figure 2 Color-Mapped Frame Buffer

The use of the colormap, however, disguises the spatial structure in the image• An indication

of this can be obtained by calculating the zero-th and first order entropies of the image. These

quantities were computed using the index arrays for the four test images shown in Figure 3, and

are listed in Table 1.
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Table 1 Entropies of the Source Images

Image 1to Ill

Lena

Park

Omaha

Lincoln

7.617

7.470

7.242

5.916

7.413

7.797

7.165

6.674

The large values of H1 in the table verify that the spatial correlation in the image pixel

values has been reduced by the color-mapping process. The values of Ho are also relatively

large, a direct result of selecting an 8-bit colormap. The data compression due to the color

quantization process implies that the color index values stored in the image are more critical

than similar values in, for example, an achromatic image. To further verify this, an experiment

was conducted in which errors were introduced in the least significant bit of a color-mapped

image, similar to what might be encountered if the color index values were quantized. The

resultant images were of poor subjective quality at best, and often completely unrecognizable.

Since quantization is a part of many popular source coding schemes, the available choices for

compression schemes become limited.

2 Colormap Sorting

In the previous section, several problems unique to color-mapped images were discussed.

The root of these problems is that the colormap indices stored in the image have little relationship

with each other, which complicates coding for progressive transmission. In this section, methods

of restoring this relationship are discussed.

Colormap sorting is a combinatorial optimization problem. Treating the K colormap entries

as vectors, the problem is defined as follows. Given a set of vectors {ax, a2, ..., aK} in a three-

dimensional vector space and a distance measure cl(i,j) defined between any two vectors ai and

ai, find an ordering function L(k) which minimizes the total distance D:

K-1

D = d(L(k),L(k+ 1)) (1)
k=l
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The ordering function L is constrained to be a permutation of the sequence of integers {1,..., K}.

Another possibility results when the list of colormap entries is considered as a ring structure. That

is, the colormap entry specified by L(K) is now considered to be adjacent to the entry specified

by L(1). In this case, an additional term of d( L( K), L(1)) is added to the distance formula D.

The sorting problem is similar to the well-known travelling salesman problem, and is identical

if the colormap is considered as a ring structure. As such, the problem is known to be NP-

complete [3], and the number of possible orderings to consider is 1/2[(K - 1)!][4]. Algorithms

exist which can solve the problem exactly [4][5]; however, these algorithms are computationally

feasible only for K no greater than about 20. Efficient algorithms for locating a local minimum

exist [4] for It" < 145. For large colormaps such as K = 256, another approach is necessary.

Two techniques were tested. The first is a "greedy" technique, discussed in Section 2.1. The

second is an algorithm which has performed well in practice, known as simulated annealing.

Simulated annealing was chosen as the sorting method for the colormaps in this work, and is

described in more detail in Section 2.2.

The distance metric d was chosen to be (unweighted) Euclidean distance, and different color

spaces were investigated. Three color spaces were selected: the NTSC RGB space, the CIE

L*a*b* space, and the CIE L*u*v* space. The NTSC RGB space was chosen since it corresponds

to the color primaries of the original images. Color spaces which can be linearly transformed to

the NTSC RGB space were not considered, since the use of an unweighted Euclidean distance

measure would give similar results for such a color space. The two CIE color spaces were

selected since they provide a means to measure perceptual color differences.

2.1 Sorting Using Simulated Annealing

Simulated annealing [3][6] is a stochastic technique for combinatorial minimization. The

basis for the technique comes from thermodynamics and observations concerning the properties

of materials as they are cooled. The technique described in this section is based on the

implementation in [6].
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To illustrate this concept, consider an iron block. At high temperatures, the iron molecules

move freely with respect to each other. If the block is quenched (cooled very quickly), the

molecules will be locked together in a high-energy state. On the other hand, if the block is

annealed (cooled very slowly), the molecules will tend to redistribute themselves as they lose

energy, with the result being a lower energy lattice which is much stronger. The distribution of

molecular energies is characterized by the Boltzmann distribution:

P( E) ,',, e-E/kT (2)

where E is the energy state, T is the temperature, and k is Boltzmann's constant. The significance

of this distribution is that even at low temperatures, there is some probability that a molecule

will have a high energy. In a combinatorial optimization situation, the Boltzmarm distribution

can be used to temporarily allow increases in the cost function, while still generally striving to

achieve a minimum.

Solving the colormap sorting problem involves selecting each color only once while

minimizing the sum of the distances between the colors. To find a solution using simulated

annealing, an initial path through the nodes (colors) is chosen, and its cost computed. The

algorithm then proceeds as follows:

1. Select an initial temperature T and a cooling factor a.

2. Choose a temporary new path by perturbing the current path (see below), and compute

the change in path cost, AE = Enew - Eola. If AE < 0, accept the new path.

3. If AE > 0, randomly decide whether or not to accept the path. Generate a random

number r from a uniform distribution in the range [0, I), and accept the new path

if r < exp(-AE/T).

4. Continue to perturb the path at the current temperature for/" iterations. Then, "cool"

the system by the cooling factor: Tnew = aTol,t. Continue iterating using the new

temperature.

5. Terminate the algorithm when no path changes are accepted at a particular temper-

ature.
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The decision-making process is known as the Metropolis algorithm. Note that the decision

process will allow some changes to the path which increase its cost. This makes it possible for

the simulated annealing method to avoid easily being trapped in a local minimum of the cost

function. Hence, the algorithm is less sensitive to the initial path choice.

For the images of this work, initial values of T ranged from 80 to 500, depending on the

color space used. The cooling factor _ was usually chosen as 0.9. The simulated annealing

algorithm seemed to be most sensitive to the choice of this value, as values outside the range

[0,85, 0.95] caused the cooling to occur too slowly or too quickly. The number of iterations

per temperature I was chosen as 100 times the number of nodes (colors), or 25,600. However,

to improve the execution speed of the algorithm an improvement suggested by [6] was added,

which causes the algorithm to proceed to the next temperature if (10)(number of nodes) = 2560

successful path changes are made at a given temperature.

Also, a method for perturbing the path must be selected. In this work, the perturbations

were made using the suggestions of Lin [4][6]. At each iteration, one of two possible changes

to the path are made, chosen at random. The first is a path transport, which removes a segment

of the current path and reinserts it at another point in the path. The location of the segment,

its length, and the new insertion point are chosen at random. The second perturbation method,

called path reversal, removes a segment of the current path and reinserts it at the same point

in the path, but with the nodes in reverse order. The location and length of the segment are

again randomly chosen.

The algorithm outlined in the previous paragraphs formulates colormap sorting as a travelling

salesman problem. This type of problem usually assumes a complete tour will be made (i.e.,

the salesman desires to retum to the original city). Hence, the colormap is assumed to have a

ring-like structure. However, the simulated annealing technique can also be used if this is not

the case, allowing the colormap to be considered as a linear list structure. Experiments using

both structures were conducted.
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3 Colormap Sorting and Lossless Compression

The results of sorting the colormaps of the test images using simulated annealing are shown

in the following tables. Table 2 shows results for sorting the colormap as a circular ring structure,

while Table 3 shows the results of sorting the colormap as a linear structure. Given in the tables

are values for the resulting first-order entropy and the final path cost (the distance measure D).

Table 2 Resultant Images With Circularly Sorted Colormaps

Image RGB Space L*a*b Space L*u*v* Space

Name Cost HI Cost HI

Lena

Park

Omaha

Lincoln

Cost Ht

13.88 5.641

19.32 6.325

11.04 6.209

10.62 5.513

857.80

1609.46

1081.82

1193.88

5.627

6.330

6.303

5.831

208.49

310.41

363.21

224.06

5.480

6.218

6.178

5.478

Table 3 Resultant Images With Linearly Sorted Colormaps

Image

Name

Lena

Park

Omaha

Lincoln

RGB Space

Cost H1

11.68 5.575

15.66 6.26O

10.81 6.532

10.61 5.774

Cost

847.29

1509.25

1004.69

1177.80

L*a*b Space

H1

5.933

6.775

6.554

6.120

L*u*v* Space

Cost Ht

200.31 5.512

292.29 6.546

283.66 6.199

204.64 5.735

Note that the zero-order entropy//o is not changed by the sorting process, since permuting

the colormap entries does not change the frequency of occurrence of a particular color. The lower

first-order entropies of the resultant images indicate that some of the spatial correlation between

color indices has been restored in each case. The sorting results for the NTSC RGB space show

that sorting in this space yields good results, if entropy reduction (the first goal stated above) is

the goal. However, the L*u*v* space sorting gives better results, with the added advantage that

the perceptual differences between colormap entries has been considered. Hence, the resultant

images from this sort should also be able to accept quantization errors while maintaining good

subjective quality, the second goal stated previously. We examine this further in the next section.

In terms of lossless compression, the sorting has resulted in a drop of 2 bits per pixel for the
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Lena image and 1 to 1.5 bits per pixel for the other images. For a 512x512 image this translates

to a savings of between 32,768 to 65,536 bytes per image. For a large database of images this

could be a considerable saving.

4 Colormap Sorting and Lossy Compression

The sorting of the colon-nap restores some perceptual structure to the colormap indices in the

sense that indices close in numerical value are also close in some perceptual sense. Therefore it

should be possible to introduce errors into the indices without destroying the image. To verify this

hypothesis, we dropped the three least significant bits of the L*u*v*-sorted Park images. Good

subjective results were obtained using quantization levels down to as low as 5 bits/pixel from the

8-bit original. Figure 4 shows the colorrnap for the Park image, before and after sorting. The

sorted colormap shown was sorted as a linear list in L*u*v* space. Figure 5 shows the result of

quantizing the Park image to 5 bits/pixel, before and after the colormap has been sorted. A caveat

is in order here. While the distance between the eight-bit indices have more perceptual meaning,

the sorted colormap image should not be assumed to have the same properties as an eight-

bit monochrome image. In some cases, if the distance between the orighaal and reconstructed

(compressed and decompressed) indices is large enough, there might be a drastic change in color

between those pixels in the original and reconstructed image. In the monochrome case large

distances would correspond to changes in shading which might be overlooked by the viewer.

To see how well the sorted color-mapped images lend themselves to lossy compression we

compress them using particular implementations of two popular lossy compression techniques,

the Discrete Cosine Transform (DCT) and Differential Pulse Code Modulation (DPCM).

4.1 DCT Coding of Color-mapped Images

In Figure 6 we coded the Lena image with the unsorted colormap at two bits per pixel using

the unsorted color map. As can be seen from the figure, the original image is totally lost and all

that remains is seemingly random colors. It should be noted that for eight-bit monochrome images,



- Compression of Color-mapped Images _ A .C. Hadenfeldt

DCT coding at two bits per pixel generally provides a reconstruction which is indistinguishable

from the original.

In Figure 7 we show the same image, this time with the sorted color map, coded at two bits

per pixel with the fixed bit allocation. [7] The images in Figure 8 were coded at two and one

bit per pixel using the JPEG [8] algorithm, l Note that while the image coded using the fixed bit

allocation shown in Figure 7 is far superior to the image in Figure 6 there are still quite a few

annoying artifacts. This is because of the nonadaptive nature of the algorithm which, while it

minimizes the average error, may permit the introduction of large errors in individual blocks. As

the color-mapped images are particularly sensitive to large errors, this could account for the low

quality reproduction. The /PEG algorithm adapts its bit allocation on a block-by-block basis.

Therefore, the image in Figure 8(b) which is coded at half the rate of the image in Figure 7

still provides superior quality.

4.2 DPCM Coding of Color-mapped Images

Standard DPCM coding of color-mapped images is problematic because in the busy regions

of images, especially edges, the prediction error is generally large, leading to large overload

noise values. In monochrome images these noise values result in a blurred look around edges,

which may be acceptable for certain application. However, in color-mapped images these noise

values will result in splotches of different colors. The Edge Preserving DPCM (EPDPCM) system

avoids this problem by the use of a recursively indexed quantizer [9,10], in which the magnitude

of the quantization error is always bounded by txT" This attribute makes it ideal for application

to the coding of color-mapped images. Another advantage of the EPDPCM system is that, as

the quantizer output alphabet can be kept small without incurring overload error, the output is

amenable to entropy coding.

Results using the EPDPCM system are shown in Figure 10. The image in Figure 10(a) was

coded at a rate of 2 bits per pixel, while the image in Figure 10(b) was coded with 1.35 bpp.

t The JPEG coded images were coded using software from the independent IPEG foundation.

9
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The advantage of DPCM systems over transform coding systems is their low complexity

and higher speed. However, the reconstruction quality obtained using transform coding systems

is generally significantly higher than that of DPCM systems at a given rate. Comparing Figure

10(a) and 8(a), this is obviously not the case for the sorted colormapped images. In fact, the

quality of the two-bit EPDPCM coded image is actually somewhat higher than the two-bit DCT

coded image. Thus using the EPDPCM system provides advantages both in terms of complexity

and speed, and reconstruction quality.

5 Conclusion

In this paper we have shown that use of sorted colormaps makes color-mapped images

amenable to both Iossless and Iossy compression. For lossy compression conventional wisdom

dictates the use of DCT coding for most types of images. However, for color-mapped images

DPCM coding might be more advantageous.
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A Robust Coding Scheme for Packet Video
Yun-Chung Chen, Khalid Sayood, Member, IEEE, and Don J. Nelson, Senior Member, IEEE

Abstract--We present a layered packet video coding algorithm
based on a progressive transmission scheme. The algorithm
provides good compression and can handle significant packet
loss with graceful degradation in the reconstruction sequence.
Simulation results for various conditions are presented.

I. INTRODUCTION

UE to the rapid evolution in the fields of image process-ing and networking, video information will be an impor-

tant part of tomorrow's telecommunication system. Up to now,

video transmission has been mainly transported over circuit-

switched networks. It is quite likely that packet-switched
networks will dominate the communications world in the

near future. Asynchronous transfer mode (ATM) techniques in

broadband-ISDN can provide a flexible, independent and high-

performance environment for video communication. There-

fore, it is necessary to develop techniques for video trans-
mission over such networks.

The classic approach in circuit switching is to provide

a "dedicated path," thus reserving a continuous bandwidth

capacity in advance. Any unused bandwidth capacity on the

allocated circuit is therefore wasted. Rapidly varying signals,

like video signals, require too much bandwidth to be ac-

commodated by a standard circuit-switching channel. With

a certain amount of capacity assigned to a given source,

if the output rate of that source is larger than the channel

capacity, quality will be degraded. If the generating rate is

less than the available capacity, the excess channel capacity is

wasted. The use of packet networks allows for the utilization

of channel sharing protocols between independent sources and

can improve channel utilization. Another point that strongly

favors packet-switched networks is the possibility that the
integration of services in a network will be facilitated if all

of the signals are separated into packets with the same format.

Some coding schemes which support packet video have
been explored. Verbiest and Pinnoo proposed a DPCM-based

system which is comprised of an intrafield/interframe predic-

tor, a nonlinear quantizer, and a variable length coder [1]. Their

codec obtains stable picture quality by switching between three
different coding modes: intrafield DPCM, interframe DPCM,

and no replenishment. Ghanbari has simulated a two-layer

conditional replenishment codec with a first layer based on
hybrid DCT-DPCM and second layer using DPCM [2]. This
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scheme generates two type of packets: "guaranteed packets"

contain vital information and "enhancement packets" contain

"add-on" information. Darragh and Baker presented a sub-

band codec which attains a user-prescribed fidelity by allowing

the encoder's compression rate to vary [3]. The codec's design

is based on an algorithm that allocates distortion among

the sub-bands to minimize channel entropy. Kishino et al.

describe a layered coding technique using discrete cosine

transform coding, which is suitable for packet loss compen-

sation [4]. Karlsson and Vertterli presented a sub-band coder

using DPCM with a nonuniform quantizer followed by run-

length coding for baseband and PCM with run-length coding

for nonbaseband [5]. In this paper, a different coding scheme

based on a progressive transmission scheme called Mixture

Block Coding with Progressive Transmission (MBCPT) [6],

[7] is investigated. Unlike the methods mentioned above,

MBCPT does not use decimation and interpolation filters to

separate the signals into sub-bands. However, it does have the

attractive property of dealing separately with high frequency

and low frequency information. This separation is obtained by

the use of variable blocksize transform coding.

This paper is organized as follows. First, some of the

important characteristics and requirements of packet video are

discussed. In Section III, the coding scheme called mixture

block coding with progressive transmission (MBCPT) is pre-

sented. In Section IV, a network simulator used in testing the
scheme is introduced. In Section V the simulation results are

discussed. Finally, in Section VI the paper is summarized.

II. CHARACTERISTICS OF PACKET VIDEO

The demand for various services, such as telemetry, terminal

and computer connections, voice communications, and full-

motion high-resolution video, along with the wide range

of bit rates and holding times they represent, provides an
impetus for building a Broadband Integrated Service Digital

Network (B-ISDN). B-ISDN is a projected worldwide public

telecommunications network that will service a wide range

of user needs. The continuing advances in the technology

of optical fiber transmission and integrated circuit fabrication

have been driving forces to realize B-ISDN. The idea of

B-ISDN is to build a complete end-to-end switched digital
telecommunication network with broadband channels. Still to

be precisely defined by CCITT, with fiber transmission, H4

has an access rate of about 135 Mbps.

Packet-switched networks have the unique characteristics of

dynamic bandwidth allocation for transmission and switching
resources, and the elimination of channel structure. They

acquire and release bandwidth as needed. Because the video

signals vary greatly in bandwidth requirement, it is attractive

0090--6778/92503.00 © 1992 IEEE
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to utilize a packet-switched network for video coded sign,'ds.

Allowing the transmission rate to vary, video coding based

on packet transmission permits the possibility of keeping

the picture quality constant, by implementing "bandwidth on

demand." There are three main merits when transmitting video

packets over a packet-switched network.
1) Improved and consistent image quality: If video signals

are transmitted over fixed-rate circuJls, there is a need to keep

the coded bit rate constant, resulting in image degradation

accompanying rapid motion.

2) Multimedia integration: As mentioned above, integrated

broadband services can be provided using unified protocols.

3) Improved transmission efficiency: Using variable bit-rate

coding and channel sharing among multiple video sources,
scenes can be transmitted without distortion if other sources,

at the same time, are without rapid motion.

However video transmission over packet networks also has

the following drawbacks.

1) The time taken to transmit a packet of data may change
from time to time.

2) Packets may be delayed to the point where, because of

constraints due to the human visual system, they have to be
discarded.

3) Headers of packets may be changed because of errors

and delivered to the wrong receiver.

It has to be emphasized that the delay/lost effect can

reach very high levels if the combined users' requirements

exceeds the acquirable bandwidth and may seriously damage

the quality of the image.

When the signals transmitted in the network are nonstation-

ary and circuit-switching is used with limited bandwidth, a
buffer between the coder and the channel is needed to smooth

out the varying rate. If the amount of data in the buffer exceeds

a certain threshold, the encoder is instructed to switch into a

coding mode that has lower rate but worse quality to avoid

buffer overflow. In packet-switched networks, asynchronous

time division multiplexing (ATDM) can efficiently absorb
temporal variations of the bit-rate of individual sources by

smoothing out the aggregate of several independent streams

in the common network buffers [8].

To deliver packets in a limited time and provide a real time
service is a difficult resource allocation and control problem,

especially when the source generates a high and greatly

varying rate. In packet-switched networks, packet losses are
inevitable, but use of a packet-switched network yields a

better utilization of channel capacity. However, it should be

noted that the varying rate requirements of the video coder

may not be synchronized with the variations in available

channel capacity which changes depending on the traffic in
the network. Therefore, the interactions between the coder and

the network have to be considered and incorporated into the

requirements for the coder. These requirements include the

following.

1) Adaptability of the coding scheme: The video source
we are dealing with has a varying information rate. So it is

expected that the encoder should generate different bit rates

by removing the redundancy. When the video is still, there is
no need to transmit anything.

2) Insensitivity to error: The coding scheme has to be

robust to the packet loss so that the quality of the image

is never seriously damaged. Remember that retransmission is

impossible because of the tight timing requirement.
3) Resynchronization of the video: Because of the vary-

ing packet-generating rate and the lack of a common clock
between the coder and the decoder, we have to find a way

to reconstruct the received data which is synchronous to the

display terminal.

4) Control coding rate: Sensing the heavy traffic in the

network, the coding scheme is required to adjust the coding

rate by itself. In the case of a congested network, the coder

could I-e switched to another mode which generates fewer bits

with a minimal degradation of image quality.

5) Parallel architecture: The coder should preferably be

implemented in parallel. That allows the coding procedure to

be run at a lower rate in many parallel streams.

In the next section, we investigate a coding scheme to see

how well it satisfies the above requirements.

III. MIXTURE BLOCK CODING WITH PROGRESSIVE

TRANSMISSION

Mixture block coding (MBC) is a variable-blocksize trans-

form codi.ag algorithm which codes the image with different

blocksizes depending upon the complexity of that block area.

Low-complexity areas are coded with a large blocksize trans-

form coder while high-complexity regions are coded with
small blocksize. The complexity of the specific block is

determined by the distortion between the coded and original

image when the same number of bits are used to code each

block. A more complex image block has higher distortion. The

advantage of using MBC is that it does not process different

complex regions with the same blocksize. That means MBC

has the ability to choose a finer or coarser coding scheme to

deal with different complex parts of the same image. With the
same rate, MBC is able to provide an image of higher quality

than a coding scheme which codes different complex regions
with the same blocksize coder.

When using MBC, the image is divided into maximum

blocksize blocks. After coding, the distortion between the

reconstructed block and the original block is calculated. The

block being processed is subdivided into smaller blocks if

that distortion fails to meet the predetermined threshold.

The coding-testing procedure continues until the distortion

is small enough or the smallest blocksize is reached. In this

scheme, every block is coded until the reconstructed image is

satisfactory and then moves to the next block.

Mixture block coding with progressive transmission

(MBCPT) is a coding scheme which combines MBC and

progressive coding. Progressive coding is an approach that

allows an initial image to be transmitted at a lower bit

rate which can later be updated [9]. In this way, successive
approximations converge to the target image with the first

approximation carrying the "most" information and the

following approximations enhancing it. The process is like

focusing a lens, where the entire image is transformed from

low-quality into high-quality. In progressive coding, every
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Fig. t. Structure of the first pass consistingof 16 x 16 blocks for MBCPT.

pixel value, or the information contained in it, is possibly

coded more than once and the total bit rate may increase

due to different coding scheme and quality desired. Because

only the gross features of an image are being coded and

transmitted in the first pass, the processing time is greatly

reduced for the first pass and a coarse version of the image

can be displayed without significant delay. It has been shown

that it is perceptually useful to get a crude image in a short

time, rather than waiting a long time to get a clear complete

image.

With different stopping criterion, progressive coding is

suitable for dynamic channel capacity allocation. If a predeter-

mined distortion threshold is met, processing is stopped and

no more refining action is needed. The threshold value can

be adjusted according to the traffic condition in the channel.

Successive approximations (or iterations) are sent through the

channel in progressive coding and lead the receiver to the

desired image. If these successive approximations are marked

with decreasing piority, then a sudden decrease in channel

capacity may only cause the received image to suffer from

quality degradation rather than total loss of parts of the images.

MBCPT is a multipass scheme in which each pass deals

with different blocksizes. The first pass codes the image with

maximum blocksize and transmits it immediately. Only those
blocks which fail to meet the distortion threshold go down to

the second pass which processes the difference image block

(coming from the original and coded image obtained in the first

pass) with smaller blocks. The difference image coding scheme

continues until the final pass which deals with the minimum

size block. At the receiving end, a crude image is obtained

from the first pass in a short time and the data from following

passes serve to enchance it. Fig. 1 shows the structure of a

pass consisting of 16 x 16 blocks for MBCPT. Fig. 2 shows the

parallel structure of MBCPT. Coding algorithms using quad

trees have also been proposed by Dreizen [10] and Vaisey and

Gersho [11]. In the quad tree coding structure of this paper,
the 16 x 16 block is coded and the distortion of the block is

calculated. If the distortion is greater than the predetermined

threshold for 16 x 16 blocks, the block is divided into four 8 x 8

blocks for additional coding. This coding-checking procedure

is continued until the only image blocks not meeting the

threshold are those of size 2 x 2. Fig. 3 shows the algorithm.

The blocksize used in the coding scheme should be small

pass 16 z 18

t

pass 8 x 8

J

I pss= 4 x 4

,,I

pass

with decressln=

priority

Zx2
with lowest

priority

Fig. 2. Parallelstructure for MBCPT.

18 x 16

8x8

4 X 4

2x2

Fig. 3. Example of the quad tree structure.

enough for ease of processing and storage requirements, but

large enough to limit the inter-block redundancy [I2]. Large

blocksizes result in higher compression, but it is very difficult

to build real-time hardware for blocksizes larger than 16 x

16 because of the increase in the number of computations.

So, 16 x 16 is chosen to be the largest bloeksize. The

minimum blocksize determines the finest visual qualtiy that

is achievable in the busy area. If the minimum blocksize

is too large, it is possible to observe the blockiness in the

coded edge of spherical objects because the coding block is

square. In order to match the zonal transform coding used
in this paper, 2 x 2 is the smallest blocksize and there are

four passes (16 x 16, 8 x 8, 4 x 4, 2 x 2) in this scheme.

Figs. 4-7 shows images from the 4 passes.

After applying the discrete cosine transform, only four

coefficients, including the de and three lowest order frequency
coefficients, are coded and the others are set to zero. The de

coefficient in the first pass is coded with an 8-bit uniform

quantizer due to the fact that it closely reflects the average

gray level for that image block and is hard to model. The

de coefficient in the subsequent passes follows a Laplacian
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Fig. 4. [map: ro:Lm,_ruc_,.'d from fir',t pas,,.
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Fig. 6. Image rccort,,tructcd from fir',t three passes.

model, and a 5-bit optimal Laplacian nonuniform quantizer
is used to code it. Tile ac coefficients also follow a Laplacian

model with a variance greater than that of the dc coefficient and

can therefore also be coded using a Laplacian quantizer. As

an alternative, an LBG xector quantizer with a 512 codebook

size is used to quantize the vector v.hich comprises the three.
ac coefficient. The initial threshold of each pass is selected

beforehand and is readjustable during the operation according

to the channel condition and quality required.

Because only partial blocks v, hich fail to meet the distortion
threshold need to be coded, side information is needed to

instruct the receiver _n how to reconstruct the image. One
bit of overhead is needed for each block. If a block is to

be divided, a 1 is assigned to bc its overhead: if not, a 0

is assigned. The example _,hov.n in Fig. S has the following
overhead: 1. l()lll, lt_l_l. 1_(_1. ll)qll, l¢il_l.

The interframe coder u,cd in this paper is a differential

scheme which is based on MB(;H-. This coder processes

Fig. 7. Image reconstrucied from four passes.

x x
x x

18 x 16

overhead = 1,I001.1001,1001,1001,1001

Fig. 8. Overhead assignment and zonal coding.

the difference image coming from the current frame and the

previous frame which is locally decoded from the first three

pass data. Fig. 9 shows the algorithm of this coder. Fig. 10

shows a different scheme which does the local decoding with

all four passes. From Fig. 11, it can be seen that when there

is no packet loss, the performances of these two schemes are

quite the same. But when congestion occurs in the network,

with the priorities assigned to packets, packets from pass 4 are

expected to be discarded first. In this case, the performance

(from Fig. 12) of the scheme in Fig. 9 is much better than

the one in Fig. 10. Therefore the coding scheme in Fig. 9 is

used in our simulation. In this paper, the Kronkite motion

sequence from the USC database with 16 frames is used as
the simulation source. Every image is 256 × 256 pixeis with

graylevels ranging from 0 to 255. It is similar to a video

conferencing type image which has neither rapid motion nor

scene changes. Due to this characteristic, advanced techniques
like motion detection or motion compensation have not been

used but could be implemented when broadcasting video.
From the datastream output that is listed in Table I, we can

see that the data in pass 4 represents 30-40% of the entire data.
This part of the data is involved in increasing the sharpness

of the image and is usually labeled with the lowest priority in

the network. We therefore call this the least significant pass

(LSP). With a substantial possibility of being discarded due

to low priority, those packets from pass 4 will not be used

to reconstruct the locally decoded image and be stored in the

frame memory. This prevents the packet loss error propagating

into following frames if the lost packet belongs to pass 4.
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Video
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Fig. 9. Differential MBCPT coding scheme (1).

Video
in

CHANNEL

D

Coder

MSP

.... _ Videoout

Decoder

Fig. 10. Differential MBCPT coding scheme (2).

IV. SIMULATION NETWORK

The network simulator used for this study was a modified

version of an existing simulator developed by Nelson et al.

[13]. A brief description of the simulator is provided here.

A. Introduction

As mentioned in Section II, tomorrow's integrated telecom-

munication network is a very complicated and dynamic struc-

ture. Its efficiency requires sophisticated monitoring and con-

trol algorithms with communication between nodes reflecting

P.

Fig. 11.
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Performance of two differential MBCPT schemes without packet

loss.
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Fig. 12. Performance of the two MBCPT schemes with packet losses from

pass 4.

the existing capacity and reliability of system components.

The scheme for communicating information regarding the

operating status is called the system protocol. Since the

communication of system information must flow through
the channel, it reduces the overall capacity of the physi-

cal layers, but hopefully provides a more efficient system

overall. Therefore, system efficiency depends entirely upon

these protocols, which, in turn, depend upon the system

topology, communication channel properties, nodal memory

and component reliability. Most network protocols have been

developed to provide high reliability in topological structures

with reasonably high channel reliability.

In order to fit into the purpose of this study, most modifica-
tions which were made to the simulator were in those modules

concerning the network layer. Since the simulator is structured

in modules which represent, to some degree, the ISO Model for

packet switched networks, a more detailed description about

the network layer modules follows.

B. The "Network Layer and Basic Operation

The simulation of a layer at each node is represented by

a "processor" and one or more "packet queues." All events

are scheduled through the "Sim_Q" which drives the simu-
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TABLE [

PERFORMANCEDEGRADATION DUE TO PACgET Loss IN DIFFERENT PASSES

PSNR with packet losses only in

Frame #
Pass 4 Pass 3 Pass 2 Pass 1

0 40.30 40.30 40.30 40.30

1 40.59 40.37 40.12 37.55

2 40.07 39.02 36.15 31.99

3 39.70 38,19 35.82 31.70

4 40.19 38.35 36.31 30.18

5 39.65 38.05 35.21 28.35

6 38.74 36.27 33.23 26.07

7 38.59 35.58 31.52 24.6 l

8 38.68 34.96 30.81 23.27

9 38.51 34.33 29.85 21.77

10 39.48 34.31 29.86 21.54

11 39.26 34.01 29.67 21.90

12 38.83 33.75 29.57 22.00

13 38.54 33.09 29.46 22.30

14 38.86 33.21 29.52 22.34

15 39.47 33.24 29.37 22.33

lator. Initially, the processors are all idle, the packet queues

are all empty and the only tasks scheduled are the arrival

of messages at the various nodes. The simulator operation

occurs by examining the next event and performing the task

indicated. The task may result in the scheduling of additional

events, generally referred to as task completion times. When

a message or packet is placed in the input queue at a node

for a given layer, the processor for that queue is marked as

busy, the packet is removed from the queue, and the task to be

performed by the processor is scheduled for completion. When

the task is completed (as a result of the simulator reaching

that point in time), the "processor" examines the queue. If the

queue is empty, the processor is set idle; otherwise it removes

the next message or packet from the queue and schedules the

completion of the operation which must be preformed. The

layers in the simulator are quite close in operation to the ISO

transport, network and datalink layers.

I) The Session Layer: In the OSI model, the session layer

(SL) allows users to establish "sessions" on local or remote

systems. In the simulator, as mentioned above, it contains a

relatively simple model of the subscribers, participates in flow-
control, and acts as a statistics collector for messages arriving

and delivered. At message arrival time (from Sire_Q), the

session layer generates the "message" with all of its randomly
selected attributes and if flow control or node hold-down are

not in effect, submits it to the transport layer. It then schedules

the next message arrival time. During initialization, the task

"SL Rcv_Msg" for each node is queued in Sim_Q for the
arrival time of the first message at that node. When this task

is executed by the simulator, a message packet is generated

and placed in the transport queue. The arrival of the next

message is then queued in Sim_Q with the same task and with
an arrival time determined by the random number generator

(Poisson Distributed). The only other task performed by the

session layer is the "SL Snd_Msg" task that simulates delivery

of mesages to the subscribers, develops message statistics and

"cleans up" the queues for messages delivered.

2) The Trattsport Layer: The basic function of the transport

layer at the sending end is to receive the message from the

session layer, place it in packets and pass the packets on

to the network layer. At the receiving end, the packets are

reassembled into a message for delivery to the session layer.

To accomplish the complex task of assuring reliable delivery,

there is a transport time-out mechanism at both the sending and

receiving nodes and a message acknowledgement packet that is

sent to the sending node when all packets for the message have

been satisfactorily received. At the sending end, if a message

acknowledgment is not received in the allotted time period,

the message can be retransmitted. In the simulations reported

in this paper, the retransmission feature was not used. At the

receiving end, if all packets are not received in the specified

period of time, the entire message is discarded. It is recognized

that in some networks, packetization takes place at the network

level, leaving the transport layer responsible only for message-

level structures. Reassembly, depending upon the protocol,

can take place as low as the datalink level. These tasks were

both placed in the transport layer, but are modular, and could

be extracted and placed elsewhere. Also, the simulator was

originally designed for datagram service, and since the packets

do not necessarily arrive in order, it is unlikely that assembly

would take place at the datalink level.

3) The Network Layer: The network laYer is concerned with
controlling the operation of the network. A key design issue is

determining how packets are routed from source to destination.

Another issue iS how to avoid the congestion casued when too

many packets are presented to the network at the same time. In

the simulator, the network layer performs all of the functions

related to these two aspects with the exception of that aspect

of flow control which takes place at the session layer, and

the recovery protocols which require some service from the
datalink layer. It also activates new channels when needed

and determines when packets originating at other nodes are to
be discarded. The network layer is currently the most dynamic

with regard to the coding of modules. Five modules currently

comprise the network layer. These include relatively static

modules; one module for capturing lines or channels when

more capacity is required and releasing them when they are
not needed; one module for the network processor and queue

handling and one module for the routines which are common

to most routing algorithms. This leaves two modules for the

dynamic parts of the routing and flow control algorithms.
4) The Datalink Layer: The main task of the datalink layer

is to take the raw transmission faciity and transform it into

a line or channel that appears free of transmission errors to

the network layer. It simulates the sending of the message

over the channel and the delivery at the other end. When a

packet is received, the datalink acknowledgment is initiated

either by the piggy-back acknowledgment or by generating a

datalink ackowledgment packet. As mentioned previously, the

datalink level also simulates the physical layer on a statistical

basis. (Entered bit eror rates are used in conjunction with

a random number generator to determine if messages are

corrupted.) When a line is "brought up," health packets are
used to establish initial connections. Also, when a line "goes

down," an active node will immediately issue health check

packets to ascertain when the channel is again available.
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C. Modifications

A major problem of using this system as a simulation tool

for the study of packet video is that as initially designed

the system did not actually transmit messages from node to

node. While a "packet" carrying all the necessary describing
information moved from node to node, there was no actual

data in the packet. Therefore, modifications had to be made to

the simulator to accommodate the video data. In the sending

node, a field called "Image" which contains real image data is

attached to the record "Packet_Ptr" allocated to the message

generated in the session layer. There are three new modules

in this layer. First, "Get_Image" puts the image data into the

image field of a message generated at a specific time and

node. Second, "Image_Available" checks to see if there is
any image data that still need to be transmitted. If that is

true, the following message, generated at that specific node, is

still the image message and contains some image data. Third,

"Receive_Image" collects the image data in the session layer

of the receiving node when the flag "Image_Complete" is on.

In module "Session_Msg_Arrive," different priorities are as-

signed to different messages. In module "Session Msg_Send,"

some statistics are calculated including the number of lost

image packets and the transmission delay for image packets.

In the original design, the transport layer simply duplicated

the same packet with different assigned sequential packet num-

bers without actually packetizing the message. The module

"Transport_Packetize" has been modified to really packe-

tize the image data which resides in the message record

queued in "Transport Q" when it is called. The module

"Transport_Reassemble" is called to reassemble these image

packets according to their packet number when the flag "Im-

age_Content" defined in "Packet _Ptr" is true. The network
layer is responsible for routing and flow-control. This module

was already very well developed, so the modifications to be

performed here were relatively minor. In the datalink layer, in

order to simulate the delivery of packets through the channel,

a new packet is generated at the receiving node and the

information including the image data from the transmitted

packet (which will still be resident at the sending node) are

copied into it. Using existing bit-error-rates, the transmission
success rate can be set and bit errors can be inserted in both the

data and control bits in the packet. Errors in the control bits are

simulated separately as long as the error rates are consistent.
If an error in the control bits occurs, the transmission is

assumed to fail and retransmission will occur, again depending

on the threshold of the timeout number. In addition to the

modifications made to the layer modules, we had to arrange

some new memory elements allocated for image messages and

packets. In order to make sure the simulation is run in the

steady state, the image data is made available to the network

after some simulaton time has passed.

V. INTERACTION OF THE CODER AND THE NETWORK

When the video data ispacked and sent intoa nonideal

network,some problems emerge.These are discussedinthe
followingsection.

A. Packetization

The task of the packetizer is to assemble video information,

coding mode information, if it exists, and synchronization

information into transmission ceils. In order to prevent the

propagation of the error resulting from the packet loss, packets

are made independent of each other and no data from the same

block or same frame is separated into different packets. The

segmentation process in the transport layer has no information
regarding the video format. To avoid the bit stream being

cut randomly, the packetization process has to be integrated

with the encoder, which is in the presentation layer of the
users's premise. Otherwise, some overhead has to be added

into the datastream to guide the transport layer to perform the
packetization in the desired manner. In order to limit the delay

of packetization, it is necessary to stuff the last cell of a packet

video with dummy bits if the cell is not completely full.

Every packet must contain an absolute address which indi-
cates the location of the first block it carries. Because every

block in MBCPT has the same number of bits in each pass,
there is no need to indicate the relative address of the following

blocks contained in the same packet. There always exists a

tradeoff between packaging efficiency and error resilience. If

error resilience is considerable, one packet should contain a
smaller number of blocks. However, since each channel access

by a station contains overhead, the packet length should be

large for transmission efficiency. Fixed length packetization is

used in this paper for simplicity.

Because of the structure of the coding scheme, the packets

are classified into four priorities, with the packets from the first

pass classified as the highest priority packets, and the packets

from the fourth pass as the lowest priority packets.

This priority assignment also reflects the importance of the

various packets to the reconstruction of the image sequence

at the receiver. Table I shows the effect of approximately the

same number of packets lost in each pass on the reconstructed

error in the received sequence.

B. Error Recovery

There is no way to guarantee that packets will not get

lost after being sent into the network. Packet loss can be

mainly attributed to two problems. First, bit errors can occur

in the address field, leading the packets astray in the network.

Second, congestion can exceed the networks management

ability and packets are forced to be discarded due to buffer

overflow. Effects created by higher pass packet loss (like

pass 4) in MBCPT coding will be masked by the basic passes
and replaced with zeros. The distortion is almost invisible

when viewing at video rates because the lost area is scattered

spatially and over time. However, loss of low pass packets

(like pass 1), though rare due to high priority, will create

an erasure effect due to packetization and the effect is very
objectionable.

Considering the tight time constraint, retransmission is not
feasible in packet video. It may also result in more severe

congestion. Thus, error recovery has to be performed by the
decoder alone. In our differential MBCPT scheme, the packets

from pass 4 are labeled lowest priority and form a great part
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TABLE II

NUMBER OF BITS TRANSMI'FrED FOR EACH PASS AND THE TOTAL

NUMBER OF BITS TRANSMITrED FOR EACH FRAME

Frame Overhead Pass 1 Pass2 Pass3 Pass4 Total

I 2588 4352 8400 24248 24416 64004

I 2 1772 4352 5992 15232 11312 386603 2156 4352 7168 19432 20104 53212

4 2088 4352 6888 18760 13216 45304

5 2164 4352 7112 19600 17416 50644

6 1988 4352 6328 17920 14336 44924

I 7 2352 4352 7448 21896 22736 587848 2432 4352 7952 22512 25704 62952

9 2316 4352 7504 21336 24136 59644

10 2568 4352 7840 " 24528 26992 66360

i 11 1892 4352 6048 16856 11144 4029212 2352 4352 7616 21728 18200 54248

13 1968 4352 6384 17584 15008 46296
14 2468 4352 7840 23128 26936 64734

15 2216 4352 9352 18088 728 34736

4352 4536 12824 12936 3616416 1496

!
Total 34816 69632 114408 315672 287392 820992

Mean 2176 4352 7150 19729 17962 51312

Deviation 290 0 1094 3179 7000 10395

I

I

of the total data. These packets can be discarded whenever

network congestion occurs. That will reduce the network

congestion and will not cause too much degradation in quality.

The erasures caused by basic pass loss are simply covered

with the reconstructed values from the corresponding area in

the previous frame. This remedy seems insufficient even when

there is only a small amount of motion in that area. Motion

detection and motion compensation could be used to find a

best matched area for replacement in the previous frame.

Side information in the MBCPT decoding scheme is very

important. So, this vital information is not allowed to get

lost. Two methods can be used for protection. First, error

control coding, like block codes or convolutional codes, can

be applied in both directions along with and perpendicular

to the packetization. The former is for bit error in the data
field while the latter is for packet loss. The minimum distance

that the error control coding should provide depends on the

network's probability of packet loss, correlation of such loss
and channel bit error rate. Second, from Table II, we can see

that the output rate of side information and pass 1 and even

pass 2 is quite steady. It seems feasible to reserve a certain
amount of channel capacity to these outputs to ensure their

timely arrival. That means circuit-switching can be used for

important and steady data.

C. Flow Control

In order to shield the viewer from severe network conges-
tion, there are some flow control schemes which are considered
useful. It there is an interaction between the encoder and

the transport layer, then the encoder can be informed about

the network condition. Depending on that, the encoder can

adjust its coding scheme. In the MBCPT coding scheme, if the

buffer is getting full, that means that the bit generating rate

is overwhelming the packetization rate and the encoder will

switch to a coarse quantizer with fewer steps or loosen the

threshold to decrease its output rate. In this way, smooth qual-

ity degradation is obtainable. However, this also complicates

the encoder design.

It is possible to use the congestion control of the network

protocols to prevent drastic quality change by assigning dif-

ferent priorities to packets from different passes. Ignoring the

relative importance of each packet and discarding packets

blindly sometimes brings disaster and can cause a session shut

down. For example, if the side information gets lost it can

have a severe impact on the decoding process. In the MBCPT

coding scheme, side information and packets from pass 1 are

assigned highest priority and higher pass packets are assigned

with decreasing priority.

D. Interaction with Protocols

In the ISO model, physical, datalink and network layers

comprise the lower layers which form a network node. The

higher layers have transport, session, presentation and appli-

cation layers and typically reside in a customer's premises. The

lower layers have to do nothing about the signal processing

and only work as a "packet pipe." The physical layer requires

adequate capacity and low bit error rate which are determined

only by technology. The datalink layer can only deal with

link-management because all the mechanics, like requesting

retransmission, are not feasible in packet video transmission.

The network layer has to maintain orderly transmission by

deleting the delay jitter with input buffering. Otherwise, it can

take care of the network congestion by assigning transmission

priority.

As the higher layers reside in the customer's premises, it

performs all the functions of the packet video coder. The

transport layer does the packetization and reassembly. The

packet length can be fixed or variable. Fixed packet length

simplifies segmentation and packet handling while a variable

packet length can keep the packetization delay constant. The
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session layer supervises set-up and tear-down for sessions

which have different types and quality. There is always a trade-

off between quality and cost. The quality of a set-up session

can be determined by the threshold in the coding scheme and

the priority assignment for transmission. Of course, the better
the quality, the higher the cost. Fig. 13 shows the tradeoff

between PSNR and video output rate by adjusting thresholds.

The presentation layer does most of the signal processing,
including separation and compression. Because it knows the

video format exactly, if any error concealment is required,

it will be performed here. The application layer works as a

boundary between the user and the network and deals with all

the analog-digital signal conversion.

VI. PERFORMANCE RESULTS

Results obtained in this packet video simulation show that

substantial compression can be obtained while maintaining

high image quality through the use of this differential MBCPT

scheme. The monochrome sequence used in this simulation

contains 16 frames, each of size 256 x 256 pixels with 8 bits

per pixel, which results in a bit rate of 15.3 Mbits/s, given

a video rate of 30 frames/s. As Table II shows, the average

data rates of our system is 1.539 Mbits/s. The compression
rate is about 10 with a mean PSNR of 38.74 dB where PSNR

is defined as

E (255)2
PSNR = 101ogl0_(zq _ _j)2

Fig. 14. shows the data rate of sequence frames with side

information, 4 passes and total rate. It is clear that the data

rate of pass 1 is constant as long as the quantization mode
remains the same. Side information and data from pass 2, even

pass 3, is also relatively constant (Table II D. The data rate of

pass 4 is bursty and are highly uncorrelated. As pass 4 data
is not essential to the reconstruction of the image, the rate

profiles as shown in Fig. 14 and Table I suggest the use of

a reserved channel of some sort for passes 1-3 and the side

information, and perhaps a more unreliable channel for pass 4
data which comprises more than 30% of the total traffic. Such

a situation can be accommodated in a variety of systems such
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Fig. 14. Data rate of simulation sequence fames.

TABLE Ill

OUTPUT BIT RATE FOR EACH PASS AND THE TOTAL BIT RATE. THE RATES WERE

CALCULATED WITH 30 FRAMES/S VIDEO RATE. THE MAXIMUM AND MINIMUM

VALUES ARE THE INSTAN'TANEOUS RATT,,S, WHICH CORRESPOND TO THE

RESPECTIVE MAXIMUM AND MINIMUM NUMBER OF BITS NEEDED TO

ENCODE A PARTICULAR FRAME IN THE SEQUENCE. THE UNrr IS I.OLonrrs,

Overhead Pass 1 Pass 2 Pass 3 Pass 4 Total

Mean 65.28 130.56 214.50 591.87 538.86 1539.36

Deviation 8.70 0.00 32.82 95.37 210.00 311.85

Maximum 77.04 130.56 280.56 735.84 821.52 1990.80

Minimum 44.88 130.56 136.08 384.72 21.84 1042.08

as a token ring network or a circuit switched network with a

packet-switched overlay.

Fig. 15 shows the PSNR for each frame in the sequence.
Notice that the standard deviation of the PSNR is only 0.2 dB,

which implies a substantial uniformity of quality, at least

in terms of objective performance measures. If constancy

with regard to some subjective criterion is desired, it would

be necessary to incorporate this in the determination of the

thresholds and the decision mechanism for the quad tree. In

the simulation, the same threshold has been used throughout

the sequence. If further flexibility, say for higher visual quality,

is desired, a varying threshold can be used for different frames.

That may generate a more variable bit rate.

From the difference images of this sequence, frames 1-8

seem quite motionless while frames 9-13 contain substantial

motion. We adjusted the traffic condition of the network to

force some of the packets to get lost and thus check the

robustness of the coding scheme. Heavy traffic was set up

in the motionless and motion period separately. The average

packet loss percentage was 3.3%, which is considered high

for most networks. Fig. 16 shows images which suffered

packet losses from pass 4. As can be seen, the effect of lost

packets is not at all severe, even if the lost packet rate is

unrealistically high. This is because of the performance from

the first three passes is relatively good and the packet from

the fourth pass is not essential for reconstruction. Fig. 17

shows the case when packet loss occurs in pass 1. Clearly

there are visible defects in the motion period. Further, the
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Pig. 16. (a) The effect of pass 4 packet lc,'_sfor frame 4.. (b) The effect of
pass 4 packet loss for frame 10.

error will propagate to the following frames. Apparently, the

replenishing scheme used here is not sufficient in areas with
motion. It is believed that this inconsistency can be eliminated

with a motion compensator alg¢_rithm which would find the

appropriate area for replenishment and error concealment

which limits the propagation of error.

VII. CONCLUSION

The network simulator was used only as a channel in this

simulation. In fact, before the real-ti,ne processor is built, a
lot of statistics can be collected trom the network simulator

to improve upon the eroding scheme. These include transmis-

Fig. 17.

(b)

(a) The effect of pass 1 packet loss for frame 3. (b) The effect of

pass l packet loss for frame 9.

sion delays and losses from various passes under different

network loads. For resynchronization, the delay jitter between

received packets can also be estimated from the simulation.
The environment for tomorrow's telecommunication has been

described and requires a flexibilit'< v,hich is not possible

in a circuit-switched netv, ork. With all the requirements for

applying packet video in mind, MBCPT has been investigated.

It is found that MBCPT has appealing properties, like high

compression rate with good visual performance, robustness
to packet lost, tractable integration with network mechanics

and simplicity in parallel implementation. Some additional

considerations have been proposed for the entire packet video

system, like designing protocols, packetization, error recovery
and resynchronization. For fast moving scenes, the differential

MBCPT scheme seems insufficient. Motion compensation,

error concealment of even attaching function commands into

the coding scheme are believed to be useful tools to improve

the performance and will be the direction of future research.
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Abstract

We study the performance of a DPCM system with a recursively indexed quantizer (RIQ) under

various conditions, with first order Gauss-Markov and Laplace-Markov sources as inputs. We show that

when the predictor is matched to the input, the proposed system performs at or close to the optimum

entropy constrained DPCM system. We also show that the if we are willing to accept a 5% increase in

the rate, the system is very forgiving of predictor mismatch.

1 Introduction

Differential pulse code modulation (DPCM) is often used to efficiently convert an analog source such as

speech, music or images into a digital form for communication or storage. Its efficiency is due to the

exploitation of the memory in a source by the use of a predictor, which estimates the present source sample

to be encoded, based on the quantized previous source samples. The performance of DPCM depends on two

factors

. How well the predictor exploits the source memory, i.e. , how closely it can estimate the actual source

samples.

2. How well the quantizer is matched to the prediction error (the quantizer input).

In order to maximize the goodness of prediction, the predictor is usually chosen based on the statistical

properties of a given source. However, many physical sources, such as those listed above, exhibit statistically

varying local properties which are usually quite distinct from their global ones. If this is the case and DPCM

happens to operate on a segment whose statistics differ from the global ones, it operates in a mismatched

state, which results in additional degradation in the reproduction [1].

Various schemes have been devised to handle this mismatch between the source and the predictor. These

involve some form of adaptation of the quantizer and/or the predictor, by which DPCM quickly follows up

the changing statistics of the source and prevents overloading of the system. However, this quick response

of DPCM is not without its cost: the adaptation requires more implementation and operational complexity.

Matching the quantizer to the statistics of the prediction error is even more difficult, as the quantizer

structure itself effects the statistical properties of the prediction error. One way to obtain the statistics of

the prediction error process is through the use of an orthonormal expansion [2, 3, 4, 5]. This has been used to

optimize the quantizer through an iterative procedure [4, 6, 7, 8]. However, under operational circumstances

this might not be a viable option.

*This work was supported by NASA Lewis esearch Center under grant NAG 3-806, and The Goddard Space Flight Center
under grant NAG 5-1615

tDepartment of Electrical Engineering, University of Nebraska- Lincoln, Lincoln, NE 68588-0511
iDepartment of Electronic Engineering, Ajou University, Suwon, Korea



In this paper we study the performance of a DPCM system operating on a Gauss-Markov source and a

Laplace-Markov source. The DPCM system considered here, called a recursively indexed DPCM, consists

of a uniform quantizer with infinitely many output levels, a recursively indexed binary encoder, and a

first-order linear predictor. The quantizer is designed simply by specifying its step-size, and the predictor

is non-adaptive. The Gauss-Markov and Laplace-Markov sources are chosen because of their use in the

modeling of physical sources. The goal is to observe the rate distortion performance of this system, as

well as the performance degradation when the predictor and the source are mismatched. We compare the
rate distortion performance of the proposed system to the optimum results in the literature [6], where the

quantizer was optimized using the iterative procedure mentioned above.

The simulation results show that the rate distortion performance of the proposed system achieves or comes

very close to the optimum performance at all rates studied. In the case of mismatch the simulation results

show that only a 5 percent increase in the rate allows a rather wide range of the predictor mismatch to

first-order Gauss-Markov and Laplace-Markov sources. They agree with a result in [9] reported for a 2-level

optimized DPCM that the predictor coefficient does not significantly effect the optimality of DPCM. But

unlike in [9] it is observed that a lower predictor coefficient than the source correlation coefficient is better
for the low rate case.

In Section 2 a recursively indexed binary encoder is discussed. In Section 3 DPCM is briefly reviewed and

the DPCM mismatch problem is posed. In Section 4 the performance of a recursively indexed DPCM is

considered and numerical results are presented. Conclusions follow in section 5.

2 A Recursively Indexed Binary Encoder

The DPCM system discussed here uses a quantizer with infinitely many output levels. This requires binary

encoding of a countably infinite alphabet, which poses obvious problems in design and operation. An obvious

and reasonable approach is first to represent the input alphabet using only finite many symbols and then

to encode these symbols either using a fixed-to-fixed or fixed-to-variable length encoding. A recursively

indexed binary encoder is used for just this purpose.

The recursively indexed binary encoder considered in this paper is a two stage binary encoder: recursive

indexing followed by an optimum (the minimum average codeword length) symbol-to-variable length binary

encoder for the output of recursive indexing.

Recursive indexing is a mapping of a countable set to a collection of sequences of symbols from another set

of finite size [10, 11]. Given a countable set A = {ao, a_,...} and a finite set B = {b0, bl,..., bM-1} of size
M, the recursive indexing of A by B is a mapping I of A to the collection of all sequences of symbols from
B such that

J

I(ai) -" bM-lbM-1 . • .bM-1 br if i = q(M - 1) + r (1)

q times

where q and r are the quotient and remainder of i when divided by M - 1. Set B is called the representation

set. Defined as such, recursive indexing is a one-to-one mapping, a symbol-to-variable length, M-ary, prefix-

free code and therefore uniquely and instantaneously decodable.

Since the second stage of the recursively indexed binary encoder is an optimum symbol-to-variable length

encoder (the Huffman algorithm is used to design such), the statistic of the representation symbols must
be computed. For this purpose we first compute the number of representation symbols needed to de-

scribe a typical source sequence X1,X2,...Xn of the length n from set A. Define Pk = Pr(X = a_),

then the number no of the occurrences of symbol b0 is computed as follows. Observe that b0 occurs once

whenever ao,aM_l, a2M_2,... ,ak(M_l),... occur. The number of times these symbols occur is given by

npo, npM-1, np2M- 2, • .., npk( M-1), • •. and so on. Therefore,



no = n _ Pk(M-1). (2)
k=O

In a similar manner the number nj of the occurrences of symbol bj are found to be:

oo

nj = nEPk(M-1)+ j forj = 0,1,...,M-2.

k=o (3)ooM-1

k=O j=O

From these it is seen that on the average the number of representation symbols needed for n source symbols

is

M-1

nj
j=o

Therefore, the average number of representation symbols to represent one source symbol is

(4)

M-I oo M-1

l n,= I+ nM- _ i+ (5)
n

j=0 k=0 j=0

It is convenient to define the above expression as the expansion factor, denoted e, of the recursive indexing

I. It is the factor by which one source symbol is expanded by the recursive indexing. The relative frequency

qj of representation symbol bj, is computed as follows:

n_ (6)qj = --.
n

An optimum symbol-to-variable length binary encoder after the recursive indexing takes one representation

symbol at a time and produces the corresponding binary sequence from a set of variable length code words.

It is designed for example using the ttuffman algorithm. Then its rate RR1 , the number of binary digits

per representation symbol, is bounded by

H(B) <_ Rn, < H(B) + 1 (7)

symbol-to-variable length code by the Huffman algorithm it is observed that rate R is almost equal to H(B),

the lower bound, when M is large.

The overall rate of the recursively indexed binary encoder then is bounded

ell(B) <_ R < ell(B) + e

Note that e approximately equals 1 if M is large.

(8)

3 DPCM with Recursively Indexed Binary Encoding

3.1 Source and DPCM

Let us consider the encoding by a DPCM system of a first-order Gauss-Markov process,



Xk = pxk_, + wk (9)

where Wk is an independent identically distributed Gaussian with mean zero and variance a_ . The source

correlation coefficient p is between -1 and 1.

The DPCM system consists of a quantizer, a predictor and a binary encoder In a typical operational cycle
the difference Zk between the source output Xk and its prediction X_ is quantized by quantizer Q yielding

Q(Zk), which in turn is binary encoded. The predictor considered in this paper is a first-order linear

predictor and therefore it is given by bYk-i for some constant b.

We will say that DPCM is matched to the source if the source correlation p equals the predictor coefficient
b and that it is mismatched otherwise.

The binary encoder in ordinary DPCM is either a fixed-to-fixed length or a fixed-to-variable length binary
encoder. In the former the binary encoder takes the index of the quantizer output level, produces its binary

representation and sends the binary sequence through the channel. In the latter blocks of quantizer outputs

are buffered and (usually) entropy-encoded.

The performance of a DPCM system will be measured by distortion and rate. The distortion incurred is
defined to be

N

D = lim sup 1 E E{(Xk- Yk)2}. (10)
/v--co Y 2=1

It is well-known that the error of the DPCM system is that incurred by the quantizer alone and nowhere

else, i.e., X_ - Yk = Z_ - Q(Z_) Hence the distortion can be rewritten as

N

D : limsup I E E{(Zk- Q(Zk))2}.
N--oQ N

l:=l

(11)

The rate is defined to be the average number of binary digits used to transmit one source symbol. In case

of a fixed-to-fixed length binary encoder is given by [log s N], where N is the number or quantizer output
levels. In case of a fixed-to-variable length entropy encoder it is approximately H(Q), the entropy of the

quantizer output process.

3.2 Recursively Indexed DPCM

The DPCM system considered in this paper is a recursively indexed DPCM system. It is different from an

ordinary system in the following two ways:

1. The quantizer Q is an infinite level uniform quantizer with the thresholds being the mid-points of

output levels.

2. The binary encoder is a recursively indexed fixed-to-variable length encoder.

The quantizer with infinitely-many output levels uniformly spaced yields granular distortion only. The

magnitude of the distortion is bounded by A/2. Therefore, no matter how large the input to the quantizer

is, due to bad prediction, its output is at most A/2 different from its input. Since an unoverloaded quantized

value is available to the predictor at the next prediction, the system can track the source output, thereby

yielding lower prediction errors. Due to this quick response the system does not have catastrophic error
propagation, which DPCM with a finite number of quantizer output levels has when a pathological source

sequence is encountered.

4



As discussedin Section2, a recursivelyindexedbinaryencoderis necessarybecausethequantizerused
hasinfinitelymanyoutputlevels. We note that the encoder is not necessarily an entropy-encoder for the

quantized process.

The distortion for this system is given by (11), while the rate is simply the entropy of the representation

symbols multiplied by the expansion factor.

4 Simulation Results

To test this system first order Gauss-Markov and Laplace-Markov random number generators with cor-

relation coefficient p were used. The Laplace-Markov process was defined as in [6]. The variance of the

innovation sequence was chosen so as to get a source variance of unity. For each realization of the process

100,000 samples were used.

4.1 Rate-Distortion Performance

To obtain the rate-distortion performance, the predictor was matched to the source correlation coefficient

and the step-size was varied. Each step-size/X generated a distortion-rate pair which was then plotted. The

results were overlaid on the optimum results from [6]. The results for p = 0.8 are plotted in Figures 1 and

2.

For the Gauss-Markov source the rate distortion performance of the proposed system achieves (or almost

achieves) the optimum performance for the entire range of rates. This is true for both the experimentally

obtained rates from [6] as well as the asymptotic results. Recall that for the optimum results the quantizer

was designed using a relatively complex iterative procedure, while for the proposed system the quantizer

was designed by simply specifying the step-size.

For the Laplace-Markov source, the proposed scheme again performs as well as the optimum scheme for
almost all rates as far as the experimentally obtained results are concerned. However, the proposed scheme

provides betterresults than the asymptotic results in [6]. We presume this is due to an error in the asymptotic

results (or our interpretation of them!).

Similar results were obtained for p= 0.5, and 0.2 for both sources. The results seem to indicate that the

problem of matching the quantizer with the input statistics can be easily resolved by the use of a recursively
indexed quantizer. The quantizer can be easily designed by simply specifying the step-size A, which in turn

can be specified based on the distortion requirements.

4.2 Performance Under Mismatch Conditions

To investigate the effect of mismatch between the predictor and model coefficients we used three values for

the spacing A of the uniform quantizer: 2.5a,, 1.5a,, 0.2a,. These correspond to low, medium, and high

resolution (rate) quantizations, respectively. For each spacing for uniform- quantization, the source sequence
is applied to the recursively indexed DPCM system with various values for the predictor coefficient. The

quantizer output sequence is fed to the recursively indexed binary encoder with M representation symbols.
The value of M ranges from 5 to 31. The results are shown in Figure 3, where the horizontal and vertical

axis are respectively the predictor coefficient and the product of the rate and distortion.

For the Gauss-Markov source, for low rate (A = 2.5ax) the distortion is about 0.44. The best performance

is obtained when the predictor coefficient is around 0.6, where the rate is 0.58 bits/sample. This value is far

below the source correlation 0.8. Note that in [4], the best performance was reported around 0.815, slightly

higher than the source correlation. If 5% increase in rate is allowed, then Figure 3 shows that the predictor

coefficient can be anywhere between 0.4 and 0.8.



Formediumrate(A = 1.5a_)thedistortionis about0.186,whileA2/12 is 0.1875. The best predictor

coefficient is around 0.7. The rate for this value of A and b is 1.12 bits/sample. The value of b is again lower

than the source correlation. Again a 5% increase in rate allows the predictor coefficient anywhere between

0.48 and 0.88. For high rate (A = 0.2a_) the distortion is about 0.00333, while A2/12 is 0.00333. The best

predictor coefficient is around 0.8, where the rate is 4.2 bits/sample, and can range from 0.0 to 0.99 if 5%
increase in rate is allowed.

We observe that the best predictor coefficient moves from below closer to the source correlation as resolution

increases. This may be because for larger values of A the quantization noise tends to be magnified when the

predictor coefficient is larger 1. Also we note that the distortion expression (A2/12) is quite accurate even

for large A. Similar results are observed for the Laplace-Markov source.

4.3 Effect of the Alphabet Size M

Finally we look at the size of the representation alphabet on the rate. Note that the larger the representation

alphabet is for -a certain value of A the less likely it is that the encoder will enter the recursive mode. This

implies that given a value of A larger values of M will tend to lower the value of the expansion factor e

closer to 1, thus lowering the rate. If this is a very strong effect, recursive indexing looses some of its charm,

as the smaller alphabet size of the reproduction alphabet makes it more amenable to entropy coding. The
recursively indexed DPCM system was simulated with representation alphabet sizes 7,9,11,13, and 15. The

results for a Laplace-Markov source are shown in Figure 4. Note that at low rates (large values of A)there is

no difference between these sizes. At higher rates, there is noticeable difference as we increase the alphabet

size from 7 to 11. After that point there is very little improvement obtained in the rate when the alphabet
size is increased.

5 Conclusions

Recursively indexed DPCM, which features an infinite level quantizer coded with a finite alphabet entropy

coder has been shown to be an efficient encoder for first order Gauss-Markov and Laplace-Markov sources.

The use of a recursively indexed quantizer in a standard DPCM system seems to provide a solution both to

the problem of matching the quantizer to the prediction error statistics, and the problem of exactly matching
the predictor to the source, at least for these simple sources.
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1 Introduction

The use of local area networks makes it possible to more easily implement al-

gorithms that require the use of a "side channel". In this paper we present an

ADPCM (Adaptive Differential Pulse Code Modulation) based codec which

can be conveniently implemented on LANs.

Adaptive Differential Pulse Code Modulation (ADPCM) is a very popular

compression technique because it is easy to implement, has low processing

overhead, and relatively good fidelity. This has made it the algorithm of

choice in speech compression applications, and as a second stage for subband

coding and transform coding techniques. However, ADPCM image compres-

sion is far from ideal. The most obvious drawback is poor edge reconstruction.

ADPCM cannot track sudden changes in image statistics, and this can cause

substantial edge distortion in the reconstructed image. A modified ADPCM

scheme was presented in [1] which relied on the use of side information to

prevent edge degradation. The technique is well suited for implementation

on token ring networks.

In this paper we describe the implementation of this scheme in a token

ring network environment. The paper is organized as follows. The next

section gives a brief overview of the aspects of token ring networks that are

of interest here. The modified ADPCM scheme is briefly described in the

following section. Then we describe the implementation of the proposed

algorithm on a token ring network and present simulation results.

2
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2 Token Ring Networks

In a token ring network, nodes are arranged logically in a ring with each node

transmitting to the next node around the ring. Each node simply relays the

received bit stream from the previous node to the next node with at least

one bit delay. The token is defined as a special bit pattern which circulates

on the ring whenever all the stations are idle. Whatever node has the token

is allowed to transmit a packet. When the packet has been transmitted the

token is passed on to the next node. That is, whenever the node that is

currently transmitting a packet finishes the transmission, it places the token,

for example 01111110, at the end of the packet. When the next node reads

this token, it simply passes the token if it has no packets to send. If it does

have a packet to send it inverts the last token bit, in our example turning the

token to 01111111. The station or node then breaks the interface connection

and enters its own data onto the ring.

The token ring supports two classes of traffic;

1. Synchronous Traffic: A class of data transmission service whereby each

requester is pre-allocated a maximum bandwidth and guaranteed a

response time not to exceed a specific delay.

2. Asynchronous Traffic: A class of data transmission service whereby all

requests for service contend for a pool of dynamically allocated ring

bandwidth and response time.
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A set of timers and several parameters are used to limit the length of time

a station may transmit messages before passing the token to the next station,

and the duration of information transmission of each class within a station

[2]. Each station maintains two timers, the Token_Rotation_Timer (TRT)

and the Token_Holding_Timer (THT). The TlZT at node j is used to time

the interval taken by the token to circulate around the ring starting at node

j. When node ] recaptures the token, the value of TKT is assigned to THT

and TKT is reset. When the network is initialized, the stations decide on

the value of a target token rotation time (TTRT), so that the requirements

for maximum access time are met. The upper bounds on the maximum and

average token rotation time have been studied in [3]; the results show that

the token rotation time cannot exceed twice the value of TTKT, while the

average rotation time is not greater than TTRT. The extension to several

priority classes is obtained by introducing a target rotation time for each

class, and by using that value to check whether or not the station is allowed

to transmit frames of that class.

If a station captures the token before its TRT reaches the value of TTIZT,

it is called an early token. If it captures the token after the TlZT has exceeded

the value of TTRT, it is called a late token. An early token may be used

to transmit both synchronous and asynchronous traffic , while a late token

may only be used for synchronous traffic. The difference between TTRT and

TlZT will be the available bandwidth for the asynchronous information. The

4
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amount of time a station can transmit is limited by THT.

In the following section we describe an image compression scheme which

takes advantage of lighter loads on the network to provide side information

to the receiver as asynchronous traffic. This side information is then used to

increase the quality of the reconstructed image.

3 Edge Correcting DPCM

The proposed ADPCM system uses a two-bit Robust Jayant quantizer [4, 5].

This is a uniform quantizer whose step-size A(k) is adapted based on the

previous quantizer output level H(k - 1) according to the following recursion

[61

zx(k)= 1))zx(k- 1)1

where/3 = i-e 2, e _ 0, and M(1) = 0.8, M(2) = 1.6, H(k) = I if

the output falls into the inner levels of the quantizer and H(k) = 2 if the

output is one of the outer levels of the quantizer. As the information about

which level of the quantizer was used in the previous sample, is available to

both the transmitter and the receiver, the adaptation does not require the

transmission of any side information.

The Jayant quantizer is designed to track the variance of the quantizer

noise by changing the step size A(k). Since edges are regions where the

statistics change rapidly, it follows that the step size will expand repeatedly

5
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when an edge is encountered. This fact is made use of in the following rule

to detect edges:

An edge is detected when the step size of the Jayant quantizer

expands more than P times in succession, P L 1.

The value of P should be small to reduce detection delay; a value of

two seems to work well. As both transmitter and receiver have the same

information both transmitter and receiver will detect edges at the same time.

Once an edge has been detected the proposed scheme uses an embedded

quantizer to quantize the quantization error and transmit this value over

a side channel. The use of an embedded quantizer was first proposed by

Goodman and Sundberg [7] for use over a noisy channel. In [1] the issue of

how a side channel could be configured was left open. We address this issue

in the context of token ring networks in the following section.

4 ADPCNI and the Token Ring Network

As mentioned earlier, the traffc in the token ring network is divided into syn-

chronous and asynchronous traffic. We use the regular ADPCM output as the

synchronous tra/:[ic and the output of the embedded quantizer as the asyn-

chronous traffc. Thus the side channel simply consists of the asynchronous

traffc. The reasoning behind this approach is that the system cannot afford

to lose the regular ADPCM output which also has timing constraints. The
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side information is not as critical, because the image can be reconstructed at

the receiver without the side information, albeit with some degradation.

In the analysis of a token protocol, it is generally assumed that the queues

of asynchronous messages to be sent are heavily loaded, so that messages are

always available for transmission. In our case the asynchronous information

queue will not be heavily loaded because the side information needs to be

sent only when there is an edge.

The size of the packet for synchronous traffic is fixed. Whenever the

node captures an early token, the size of the packet will be increased to

match the available capacity and the regular information followed by the

side information, if present, will be sent. The most recent side information

will be transmitted in the bandwidth available for asynchronous traffic. If

there is any side information left after transmission, it will be discarded.

Whenever the receiver receives an increased size packet it takes the bits

received after the regular size of the packet as side information. This side

information is added to the corresponding most recent "edge" pixels.

5 Simulation of Proposed Scheme

A fifty node token ring network was simulated to test the proposed system.

The parameters used in the simulation are given in Table 1.

The system is assumed to work under the following general conditions

• The packet arrival process at each node follows a Poisson distribution.
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Number of nodes 50

Bit traveling speed 200,000 met/msec

Distance between nodes 100 meters

Data generation rate 11,000 bits/sec

Packet size for synchronous information 1540 bits

Time taken by node to read the data 10_sec

Channel capacity of coaxial cable 12,000 bits/msec

Table 1: Simulator parameters

The actual image information is taken at node 1 with regular ADPCM

output arriving into one buffer, and the side information into a separate

buffer.

• The message transmitted transmitted by each station belong to two

classes, i.e. asynchronous and synchronous messages.

• The access mechanism is based on the timed token approach, but dif-

ferent classes of asynchronous messages are not considered.

• The queues of asynchronous messages are not heavily loaded.

• When the network is initialized, the token rotation will only allow the

transmission of synchronous messages; the second token rotation will

allow both synchronous and asynchronous messages.

Two types of simulations were performed.

8



An Image Compression Technique for Use

on Token Ring Networks .B. Gorjala

1. Messages transmitted at all nodes consisted of both synchronous and

asynchronous messages.

2. Only synchronous messages were transmitted at all nodes.

Load versus delay and throughput versus delay characteristics were plot-

ted for both cases and are shown in figures 1 and 2. Load is defined as the

inverse of the mean inter-arrival time i. The graph in Figure i shows that

at a particular value of the load, the average delay of a packet in the net-

work with both classes of traffic is more compared to when only synchronous

messages are transmitted. This is especially true at low loads; as the traffic

increases there is not much difference in the delay for the two cases. This

is because the network will not have enough bandwidth available for asyn-

chronous traffic when the traffic is busy.

The token ring network transmitting both synchronous and asynchronous

messages provides better delay versus throughput characteristics. Here again

at large values of throughput, there is not much difference between the curves.

The reason for the better throughput versus delay characteristics is that at

low loads, the network can utilize the channel more efficiently by transmitting

asynchronous messages whenever the bandwidth becomes available.

The two images shown in Figure 3 were used to test the proposed approach

and the results obtained at different network loads are shown in T_ble 3 and

Table 2.

The first two entries in these tables were obtained by operating the net-
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Table 2:

Run Load Delay

msec

I .226 177.3

2 .185 147.8

.156 123.3

.136 105.3

5 .i19 89.19

6 .107 73.17

7 .097 58.35

8 .085 42.82

9 .081 38.87

Results obtained at

Throughput

018033735

0.8033297

0:8032793

0.8032306

0.8030134

0.8019965

0.8000950

0.7967703

0.7956204

Rate

bpp

2.011

2.014

2.057

2.126

2.221

2.223

2.237

2.238

2.238

PSNR

dB

33.33

33.36

34.76

35.69

36.05

37.22

37.59

37.62

37.62

different network loads for couple image

Run Load Delay Throughput

msec

i .254 194.1 0.8033794

2 .169 135.3 0.8033345

3 .156 123.6 0.8033151

4 .145 114.4 0.8033025

5 .i27 97.5 0.8032005

6 .107 70.3 0.8019068

7 .092 51.8 0.7989234

8 .081 38.4 0.7954938

Rate PSNR

bpp dB

2.002 29.13

2.016 29.22

2.039 29.32

2.075 29.78

2.183 30.68

2.227 30.90

2.237 31.02

2.237 31.02

Table 3: Results obtained at different network loads for aerial image

10
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work at high loads which is in the unstable region. At these high loads almost

every node will have a packet to send, and there was no bandwidth available

for side information. As the load was decreased, more and more side informa-

tion was transmitted, providing a better reconstructed image at the receiver.

In this simulation, at a load of around 0.09, there is enough bandwidth avail-

able for node 1 to transmit all the side information. Further reduction of the

load did not have any effect on the quality of the reconstructed image.

Error images for the couple image were obtained at four different net-

work loads and are shown in Figure 4. The error image without any side

information is shown in Figure 4a for comparison. For the image shown in

Figure 3b, side information was sent in the areas of the woman's hands, the

woman's left knee and in some portions of the couples heads. In figure 4c

the edge errors are corrected in the region of the womans hands, the man's

shoulder, the photo frame, and the couple's heads. Some of the edge errors

at the man's legs are also corrected. But in this case edge errors are present

at the woman's left knee. In the image shown in Figure 4d all edge errors are

corrected except a few errors at the intersection of the man's leg and chair.

For the image shown in Figure 4e all side information was transmitted.

6 Conclusion

We have presented a low complexity scheme which can be used for trans-

mitting images over local area networks. Because of its low complexity the

ll
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scheme can be operated at high rates and may be suitable for applications

which require low delay.
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Abstract

We examine the situation where there is residual redundancy at the source coder output. We

have previously shown that this residual redundancy can be used to provide error correction without

a channel encoder. In this paper we extend this approach to conventional source coder/convolutional

coder combinations. We also develop a design for nonbinary encoders for this situation. We show

through simulation results that the proposed systems consistently outperform conventional source-

channel coder pairs with gains of greater than lOdB at high probability of error.
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1 Introduction

One of Shannon's many fundamental contributions was his result that source coding and channel

coding can be treated separately without any loss of performance for the overall system [1]. The

basic design procedure is to select a source encoder which changes the source sequence into a series

of independent, equally likely binary digits followed by a channel enc0der which accepts binary

digits and puts them into a form suitable for reliable transmission over the channel. However, the

separation argument no longer holds if either of the following two situations occur:

i. The input to the source decoder is different from the output of the source encoder, which

happens when the link between the source encoder and source decoder is no longer error free,

or

ii. The source coder output contains redundancy.

Case (i) occurs when the channel coder does not achieve zero error probability and case (ii)

occurs when the source encoder is suboptimal. These two situations are common occurrences in

practical systems where source or channel models are imperfectly known, complexity is a serious

issue, or significant delay is not tolerable. Approaches developed for such situations are usually

grouped under the general heading of joint source/channel coding.

Most joint source channel coding approaches can be classified in two main categories; (A)

approaches which entail the modification of the source coder/decoder structure to reduce the effect

of channel errors, [2-18] and (B) approaches which examine the distribution of bits between the

source and channel coders [19-21]. The first set of approaches can be divided still further into two

classes. One class of approaches examines the modification of the overall structure [2-10], while the

other deals with the modification of the decoding procedure to take advantage of the redundancy

in the source coder output.



A Joint Source/Channel Coder Design - Khalid Sayood 2

In this paper we present an approach to joint source/channel coder design, which belongs to

category A, and hence we explore a technique for designing joint source/channel coders, rather

than ways of distributing bits between source coders and channel coders. We assume that the

two nonideal situations referred to earlier are present. For a nonideal source coder, we use MAP

arguments to design a decoder which takes advantage of redundancy in the source coder output to

perform error correction. We have previously shown that this approach can provide error protection

at high error rates [16, 17]. In this paper we show that the use of such a decoder in conjunction

with a channel encoder can provide excellent error protection over a wide range of channel error

probabilities. We then use the decoder structure to infer a channel encoder structure which is

similar to a nonbinary convolutional encoder.

2 The Design Criterion

For a discrete memoryless channel (DMC), let the channel input alphabet be denoted by A =

{a0, al,...,aM-1,}, and the channel input and output sequences by Y = {Vo, Vl,..., Vr.-1} and

? = {90, 9t,..., ftL-i}, respectively. IfA = {Ai} is the set of sequences Ai = {ai,o, Oti,1,..., Oti,L-1},

cq,kEA, then the optimum receiver (in the sense of maximizing the probability of making a correct

decision) maximizes P[C], where

v[c] = P[Cl?lP[?].
,Ai

This in turn implies that the optimum receiver maximizes P[C[?]. When the receiver selects the

output to be Ak, then P[C[?] = PlY = Ak]?]. Thus, the optimum receiver selects the sequence

Ak such that

PlY = _t_[? ] >_ PlY =Ai[?] Vi.
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Noting that

p(yl _, = P(_'IY)P(Y)
PC?)

and for fixed length codes p(l_) is irrelevant to the receiver's operation, the optimal receiver

maximizes P(I;'[Y)P(Y).

show that

ff we impose a first order markov assumption on (yi}, we can easily

P (YI Y) P (Y) = IIP (9,]y,) P (y, ly,-1)

This result addresses the situation in case (ii), i.e., the situation in which the source coder output

(which is also the channel input sequence) contains redundancy. Using this result, we can design

a decoder which will take advantage of dependence in the channel input sequence. The physical

structure of the decoder can be easily obtained by examining the quantity to be ma_mized. The

optimum decoder maximizes P(YIY)F(Y) or equivalently log P(Y[Y)P(Y), but

IogP(YIY)P(Y) = _.,logP(gilyl)P(yilyi-1) (1)

which is similar in form to the path metric of a convohtional decoder. Error correction using

convohtional codes is made possible by explicitly limiting the possible codeword to codeword

transitions, based on the previous code input and the coder structure. At the receiver the decoder

compares the received data stream to the a priori information about the code structure. The output

of the decoder is the sequence that is most likely to be the transmitted sequence. In the case where

there is residual strucure in the source coder output, the structure makes some sequences more

likely to be the transmitted sequence, given a particular received sequence. In other words, even

when there is no structure being imposed by the encoder, there is sufficient residual structure in

the source coder output that can be used for error correction. The structure is reflected in the

conditional probabilities, and can be utilized via the path metric in (1) in a decoder similar in
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structure to a convolutional decoder. However, to implement this decoder we need to be able to

compute the path metric.

Examining the branch metric, we see that it consists of two terms log P(fli[Yl) and log P(Yi [Yi-1).

The first term depends strictly on our knowledge of the channel. The second term depends only on

the statistics of the source sequence. In our simulation results we have assumed that the channel

is a binary symmetric channel with known probability of error. We have obtained the second term

using a training sequence.

In [17] we showed that the use of the decoder led to dramatic improvements under high error

rate conditions. However at low error rates the performance improvement was from nonexistent

to minimal. This is in contrast to standard error correcting approaches, in which the greatest

performance improvements are at low error rates, with a rapid deterioration in performance at

high error rates. In this work we combine the two approaches to develop a joint source channel

codec which provides protection equal to the standard channel encoders at low error rates while

also providing significant error protection at high error rates.

3 Convolutional Encoders and Joint Source/Channel Decoder

As convolutional coders provide excellent error protection at low error rates, and have a decoder

structure similar to the JSC decoder, one way we can combine the two approaches is to obtain

the transition probabilities of the convolutional encoder output and use the Joint Source/Channel

(JSC) decoder described above instead of the conventional convolutional decoder.

The convolutional decoder uses the structure imposed by the encoder and the Hamming metric

to provide error protection. The decoder does not use any of the residual structure from the source

coder output. We can make use of the residual structure by noting that the path labels transmitted

by the convolutional encoder comprise the channel input alphabet (y_}. We can then use a training

sequence to obtain the transition probabilities P (YilY_-I), and an estimate of the channel error
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probability to obtain P (_)i[Yi) • These can be used to compute the branch metric L which can be

used instead of the Hamming metric in the decoder.

We simulated this approach using a two bit DPCM system as the source encoder. We used the

two images shown in Figure 1 as the source. The USC Girl image was used for training (obtaining

the requisite transition probabilities) and the USC Couple image for testing. The output of the

DPCM system was encoded using a (2,1,3) convolutional encoder with connection vectors

g0) = 64 9 (2) = 74.

The convolutional encoder was obtained from [23]. The performance of the different systems was

evaluated using two different measures. One was the reconstruction signal-to-noise ratio (RSNR)

defined as

E U_2

RSNR = 10 log10 _ (ui - fi_)2

where ui is the input to the source coder (source image) and fii is the output of the source decoder

(reconstructed image). The other performance measure was the decoded error probability. The

received sequence was decoded using either a standard convolutional decoder or the JSC decoder.

A block diagram of the system is shown in Figure 2. The results are presented in Figure 3. While

there is some improvement in the decoded error probability for high error rates, the RSNR actually

goes down for the MAP decoded sequence. This is somewhat disappointing until one realizes that

the JSC decoder makes use of the structure in the nonbinary output of the source coder. When

we used the (2,1,3) coder we destroyed some of this structure because the source coder puts out

two bit words while the channel coder codes the input one bit at a time. Therefore, if we could

preserve the structure in the source coder output by coding the two bit words as a unit we should

get improved performance. To verify this we conducted another set of simulation with a rate 1/2
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(4,2,1) convolutional code with connection vectors

g 'l= 6 = 0 6 =4

In this case there is a one-to-one match between the source coder output and the channel coder

input, and the results shown in Figure 4 reflect this fact. There is considerable improvement in

the decoded error probability and there is about a 5 dB improvement obtained by using the MAP

decoder at a probability of error of 0.1. These results justify the contention that for best use of

the JSC decoder the input alphabet size of the channel coder should be the same as the size of

the output alphabet of the source coder. To this point we have been using a MAP decoder with

an encoder designed to maximize performance with a Hamming metric. In the next section we

propose a general channel coder design to go with the map decoder which has the added flexibility

of being able to match the size of the source coder output alphabet.

4 A Modified Convolutional Encoder

Given that the preservation of the structure in the source coder output requires the channel coder

input alphabet to have a one-to-one match with the generally nonbinary source coder, we propose

a general nonbinary convolutional encoder (NCE) whose input alphabet has the requisite property.

Let x,,, the input to the NCE, be selected from the alphabet A = {0,1,2,...,N - 1}, and let

y,,, the output alphabet of the NCE, be selected from the alphabet S = {0, 1,2, ...,M- 1}. Then

the proposed NCEs can be described by the following mappings

Rate 1/2 NCE:

Rate 1/3 NCE:

Rate 2/3 NCE:

M = N2; yr, = Nz,,-1 + x,,

M = N3; y,, = N2zn-2 + Nx,,-1 + z,,

M = N3; y,_ = N2z2,_-2 + Nz2,_-I + z2n
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Because of lack of space we will only describe and present the results for the rate 1/2 NCE.

The description and results for the other cases can be found in [24] and are similar to the results

for the rate 1/2 NCE code.

The number of bits required to represent the output alphabet of the NCE codes using a fixed

length code is

[log2(M)] = [log_(N2)] = r21og_(N)l

Therefore in terms of rate, the rate 1/2 NCE coder is equivalent to a rate 1/2 convolutional encoder.

The encoder memory in bits is 2flog2(N)] as each output value depends on two input values.

As an example, consider the situation when N = 4. Then A = {0, 1,2, 3} and S = {0, 1, 2,..., 15}.

Given the input sequence x,_ : 0 1 3 0 2 1 1 0 3 3 and assuming the encoder is initialized with

zeros, the output sequence will be y,_ : 0 1 7 12 2 9 5 4 3 15.

The encoder memory is four bits. Notice that while the encoder output alphabet is of size

N 2, at any given instant the encoder can only emit one of N different symbols as should be

the case for a rate 1/2 convolutional encoder. For example if Y_-I = 0, then y,_ will take on a

value from {0, 1, 2, ..., (N - 1)}. In general, given a value for Y,,-1, Y,_ will take on a value from

(aN, aN -b 1, aN + 2, ...,aN -t- N - 1}, where c_ = y,__l(modN). This structure can be used by the

decoder to provide error protection. The encoder is shown in Figure 5.

4.1 Binary Encoding of the NCE Output

We will make use of the residual structure in the source coder output (which is preserved in the NCE

output) at the receiver. However, we can also make use of this structure in selecting binary codes

for the NCE output. An intelligent assignment of binary codes can improve the error correcting

performance of the system.

When each allowable sequence is equally likely, there is little reason to prefer one particular
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assignment over others. However, when certain sequences are more likely to occur than others, it

would be useful to make assignments which increase the 'distance' between Likely sequences. While,

for small alphabets it is a simple matter to assign the optimum binary codewords by inspection,

this becomes computationally impossible for larger alphabets. We use a rather simple heuristic

which, while not optimal, provides good results.

Our strategy is to try to maximize the Hamming distance between codewords that are likely

to be mistaken for one another. First we obtain a partition of the alphabet based on the fact that

given a particular value for y,,-1, y,, can only take on values from a subset of the full alphabet.

To see this, consider the rate 1/2 NCE; then the alphabet S can be partitioned into the following

sub-alphabets:

5'0 = (0, 1,2,3...,N- 1)

S1 -" (N, N + 1, ...,2N - 1)

SN-I = (N(N- 1),N(N- 1)+ 1,...,N2- 1)

where the encoder will select letters from alphabet Sj at time n if j = y__l(modN). Now for

each sub-alphabet we have to pick N codewords out of M (= N 2) possible choices. We first pick

the sub-alphabet containing the most likely letter. The letters in the sub-alphabet are ordered

according to their probability of occurrence. We assign a codeword a from the list of available

codewords to the most probable symbol. Then, assign the complement of a to the next symbol on

the list. Therefore the distance between the two most likely symbols in the list is K = Flog 2 M]

bits. We then pick a codeword b from the list which is at a Hamming distance of K/2 from a and

assign it and its complement to the next two elements on the list. This process is continued with

the selection of letters that axeK[2 k away from a at the k th step until all letters in the subalphabet

have a codeword assigned to them.
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4.2 Simulation Results

The proposed approach was simulated using the same setup as was used in the preceding simula-

tions. We show the results for the rate 1/2 NCE coder in Figure 6 and comparisons in Figure 7.

Note the dramatic improvement in performance with the rate 1/2 NCE code. At a probability of

error of 0.1 the RSNR. drops by less than 1 dB. For the same channel conditions the use of the

(2,1,3) code results in a drop of more than 10 dB. Looking at the decoded error probabilities, even

when the channel error probability is 0.25, the decoded error probability is less than 10 -2 . This

improvement has been obtained with only a minimal increase in complexity. Similar results have

also been obtained for rate 1/3 and 2/3 NCE codes.

5 Conclusion

If the source and channel coder are designed in a "joint" manner, that is the design of each takes

into account the overall conditions (source as well as channel statistics), we can obtain excellent

performance over a wide range of channel conditions. In this paper we have presented one such

design. The resulting performance improvement seems to validate this approach, with a "flattening

out" of the performance curves. This flattening out of the performance curves makes the approach

useful for a large variety of channel error conditions.
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Table 1: Codeword Assignments

Symbol Code Symbol Code
0 0000 8 i011

1 0011 9 0111

2 II00 I0 0100

3 1111 11 lO00

4 1110 12 0101

5 1101 13 1001

6 0001 14 i010

7 0010 15 0110
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Figure 2. Block Diagram of Proposed System
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